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Chapter 1

The Kalman criterion 1

1.1 Introduction

In these lectures we study, in particular, the issue of controllability of control
systems.

In this chapter we consider the Kalman criterion of complete controlla-
bility. This notion is defined as follows:

Definition 1.1.1 Suppose we are given a general control system
&= f(z,u) (1.1.1)

where u 1s somehow constrained. Any solution defines an admissible curve.
The system (1.1.1) is said to be completely controllable iff (if and only if)
any two points x',x" of the phase space can be connected by an admissible
curve.

We use widely the closely related notion of attainable (reachable) set

Definition 1.1.2 Let M be a subset of the phase spacet > 0, and D(t; M) =
D(t)(M) is the set of ends x(t) = x*(t) of all admissible trajectories such that
z(0) € M. The set D(t; M) = D(t)(M) is said to be attainable (reachable)
set of (1.1.1)

Then it is obvious that the system (1.1.1) is completely controllable iff
D =D(M)=|JD(t)(M) (1.1.2)

t>0

coincides with the entire phase space for any initial set M.

3



6 CHAPTER 1. THE KALMAN CRITERION 1

1.2 Linear systems with unconstrained con-
trol

These are the control system of the form
&= Az + Bu (1.2.1)

Here, the phase space V' = R" is a finite dimensional vector space, and
the space of control vectors U = R™ is another finite dimensional space.
We consider primarily the time invariant case, where A and B are constant
matrices.

Our goal is to find a criterion of controllability for the system. There is a
general important question: “How to specify the admissible control functions
t — u(t)?” In the case at hands the choice is not very relevant, for very
different functional spaces give us the same attainable sets. For definiteness
we assume that the admissible controls are the locally-integrable functions:
i.e. u is a measurable vector-function of time such that

[ 1wt < oo (1.2

We would get similar results taking, say infinitely differentiable controls, or
distributional controls. In the last case we have to be careful, because the
solution x of & = Ax + Bu, where u is a distribution supported on [0, o), is
a distribution, not a (measurable) function, and we cannot speak directly of
“the ends of trajectories z(t)”. However, for some subspaces of distributions,
like measures, there is no such a problem.

The crucial question we are dealing with is this: “How to describe the
attainable set D = |J, D(¢)({0})?” (the initial set M is the origin)

So we start with the description.
The first main properties of € = £(t) = D(t)({0}) are these:

1. &£ is a vector space
2. E(t') C EW") if ' < 1"
Both properties are almost obvious. To prove first, we note that if 2’ = z% (),

2" = " (t), then o' + 2" = 2% (¢), and that A\z“(t) = 2**(t), where ) is a
constant.
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To prove second, we have to give a recipe of procrastination: Suppose
x =2x"(t) and s =t + d, where § > 0. Then we define a new control

07 ifr<d
v(T) = { u(r —J), otherwise. (1.2.3)

In other words we stay at the origin in the interval [0,0] of time, and then
apply the shifted control u. One can see easily that z%(t) = x%(s). This
proves that £(t) C E(t +9).

In fact, the second property has nothing to do with linearity: the same
applies to any autonomous control system and initial set M consisting of
equilibrium points for the zero control.

It follows immediately from 1, 2 that D is a vector subspace of V = R".
Moreover, every admissible curve, starting from D remains in it forever. The
last property can be expressed as follows:

3. Ifx € D, then Av + Bu € D forany u € U

(the tangent vector to admissible trajectory Az + Bu in the vector space D
at point = belongs to D)
This can be restated as follows:

4. The space D contains W = BU and is invariant under the matrix A.

On the other hand it is clear that any vector subspace of V' that contains
W = BU and is invariant under the matrix A contains any admissible curve
coming from the origin. We conclude, that

5. The space D is minimal vector subspace of V' such that it contains BU
and is invariant under the matrix A.

Therefore, if our system (7.3.1) is completely controllable, then

6. any vector subspace of V that contains BU and is invariant under A
coincides with V.

Conversely, if the latter condition holds, our system is completely control-
lable.

Indeed, the condition guarantee that we can get to any point from the
origin along an admissible path, and it remains to show that we can get to
the origin from any point. This, however, corresponds to the motion from
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the origin to the point with time reversed, which, in turn, corresponds to
the substitution A — —A in governing equation (7.3.1). However, under
condition 6 any vector subspace of V' that contains BU and is invariant
under — A coincides with V.

Thus, we proved the following

Theorem 1.2.1 The system (7.3.1) is completely controllable iff any vector
subspace of V.= R™ that contains BU and is invariant under A coincides
with V.

The original Kalman controllability condition is a slight improvement of The-
orem 1.2.1:

Theorem 1.2.2 Define the Kalman matrix of size n X nm
K=[BAB ... A*'B] (1.2.4)

The system (7.3.1) is completely controllable iff the rang vk K of the Kalman
matriz is the dimension n of the phase space (mazimal possible).

Proof. The minimal subspace D of V= R" that contains BU and is invariant
under A consists of vectors of the form

= {Z AiBui, Uu; € U} (1'2'5)

i>0

where the sum is finite. On the other hand, the range of the Kalman matrix
consists of vectors of the form

n—1
KU" = {ZAZ’BW, u; € U} (1.2.6)
i>0

It remains to note that A" = Z >0 ' a; A" by the Caley—Hamilton theorem,
which proves that D = KU™.
We remind that the Calenyamilton theorem says, that if

p(X) = det(X — A)

is the characteristic polynomial of a matrix A, then p(A) =
One important property of linear control systems (7.3. 1) remains unset-
tled by now: In fact, the attainable set D = J,.,D(t)({0}) coincides with



1.2. LINEAR SYSTEMS WITH UNCONSTRAINED CONTROL 9

D(T)({0}) for any T > 0. We will establish this later on. However, it is easy
to prove the said property by methods of this lecture, and the reader might

do this as an exercise.
Hint: For any ¢ > 0 consider D; = | Jy,.sD(t)({0}) instead of

D =JD®)({0})

and follow the steps 1-6.
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Chapter 2

The Kalman criterion II.

In this chapter we discus the attainable sets of linear systems with bouded
and unbounded control.
The Kalman controllability condition is generic, so that a linear control

system
& = Ax + Bu (2.0.1)

in general position should be completely controllable. Another general re-
mark is that the complexification does not affect the controllability: The
(7.3.2) is controllable iff the complexified system

i = Acz + Bcw (2.0.2)

is controllable. Here, the phase and control spaces Vo = C" and Ug =
C™ are complexifications of V' and U, and the same holds for the matrices
involved.

2.1 A general theorem

Consider the root decomposition Vo = € V), where
Vy = {z € Vo : (A — Nz = 0 for some positive integer k}, (2.1.1)

and the corresponding projectors py : Vo — V). The existence of the root
decomposition for any operator A : V' — V is one of the basic results of
linear algebra. Define a linear control system in the space V) by

,I")\ = AC,T)\—FB)\U), (212)

11



12 CHAPTER 2. THE KALMAN CRITERION I1.

where B, = p,Bc.

Theorem 2.1.1 The system (7.5.2) is completely controllable iff all the sys-
tems (2.1.2) are so.

Proof. Denote by D the reachable set from the origin for system (7.3.2),
and by D, the corresponding set for system (2.1.2). We have to prove that
the statement D = V is equivalent to Dy = V), for all A. Indeed, D¢ is A
invariant, and, thus, has the root decomposition

Dc =P DNV = P paDe.

Each space pxDc = D¢ N V) contains the image B\Uc of Uc and is A-
invariant. Therefore, it contains D). On the other hand, if z(¢) is an ad-
missible curve of (7.3.2) its projection x,(t) = paz(t) satisfies (2.1.2) which
implies that D, contains p\Dc. We conclude, that D, = py\Dc, and D¢ =
P D,. The statement D =V is equivalent to Dc = Vo, which, in turn, just
means that @ Dy = @ V). The latter is clearly equivalent to D) = V) for
all A. A
We state a corollary of the proved theorem:

Theorem 2.1.2 Suppose that A has distinct eigenvalues {\}, the controls
are scalar, i.e., B is a vector. Then (as is well-known) the matriz A is
semisimple (diagonalizable), and the vector B has the decomposition B =
> Byey, where ey are eigenvectors of A. Then, the system (7.3.2) is comp-
letely controllable iff By # 0 for all \.

Proof is left to the listener as an exercise. A
The same conclusion can be reached by explicit calculations with the
Kalman matrix. The Kalman matrix in the basis e, takes the form

By, ByA ... B!
By, BuXy ... B!
e e hat2 (2.1.3)
B,\n B)\n)\n B)\n/\g_1

and its determinant is equal to

D VIR Vi

D VIR V.
[[Bs]det| . . , (2.1.4)
A Lo

1 Ay ... Al
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Since all ); are distinct, the latter Wandermonde determinant # 0. By
assumption [[, By # 0, and the Kalman matrix is nonsingular.

The fact that the Wandermonde determinant # 0 is well-known and fol-
lows, say, from the explicit formula

D VD M
D VRN Vot
det | © 77 2o =TI ) (2.1.5)
. . . i<j
1 A ... AL

Even more generally, consider the system (7.3.2) with the scalar control,
where the Jordan normal form of the matrix A is determined by the set
{ny,} of integer vectors, parametrized by the spectrum of A. The vector
ny = (n},... ,nl)“f) consist of sizes of the Jordan cells corresponding to the
eigenvalue A. Denote by p} the spectral projector, corresponding to the

Jordan cell of size n. This is defined uniquely if all these sizes are distinct
(for a fixed \).

Theorem 2.1.3 The system (7.3.2) with the scalar control is completely
controllable iff each of the vectors ny has all components distinct, and (A —
N Tpt B #£ 0 for each i and .

Proof, which follows the same line as that of Theorem 2.1.2 is left to the
listener as an exercise.

Corollary 2.1.4 The system

:i“i+wixl~:u, 221,,]\7
T=u

(2.1.6)

which describes the set of pendulums, attached to a cart moving under a
force applied in o fized direction, is completely controllable iff all w; > 0,
1=1,...,N are distinct and not equal to zero.

Similarly, we have a simpler
Corollary 2.1.5 The system

which describes the set of pendulums under a force applied in a fixed direction,
s completely controllable iff all w; > 0,1 =1,..., N are distinct.
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2.2 Kalman controls

We turn to the issue of actual design of controls bringing one state of the
linear system (7.3.2) to another. We already know that it is sufficient, in
principle, to come from the origin to the given point x € V.

We need the Cauchy formula for a solution of (7.3.2):

T
o(T) = a*(T) = ez(0) +/ M%) Bu(s) ds (2.2.1)
0
In particular, if z(0) = 0 then
T
z(T) =a2"(T) = / A=) Bu(s) ds (2.2.2)
0
Following Kalman we fix any 7" > 0, and consider controls of the form
ue(s) = Bret T o) (2.2.3)

where * stands for the transposition, and £ € V* = R"™.

Theorem 2.2.1 If the system (7.5.2) is completely controllable, then one
can get from the origin to a given point x at any gwen time T > 0 by using
the (unique) control of the form (2.2.3).

Proof. Consider the operator P : V* — V given by
T
P¢ :/ eA1=9) Bug(s) ds (2.2.4)
0

The conclusion of the theorem is equivalent to the fact that P is an invertible
matrix. To prove this, we note that

T
(Pe.6) = [ 1B gk as (2.2.5)

where (-, -), resp. || stand resp. for the Euclidean scalar product, resp. norm.
Therefore, the matrix P is invertible iff B*eA (T=5)¢ 2 0 for any & # 0, where
s runs over [0,7T]. However, B*eA'¢ = 0 is equivalent to (e*By, &) = 0 for
any y € U = R™. It is clear that the linear span

W => e"By, (2.2.6)
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of vectors of the form e4*By, where y € U, contains BU and is A-invariant.
Therefore, it coincides with the phase space V' by virtue of controllability.
On the other hand, W is orthogonal to £&. We have to conclude, that £ = 0,
and P is invertible. A

Exercise. Prove the following generalization of Theorem 2.2.1

Theorem 2.2.2 One can get from the origin to any given point xof the
attainable set D at any given time T > 0 by using a control of the form

Corollary 2.2.3 Consider any positive time instant T > 0, initial set M
and attainable sets D(T)(M), and D = J,o, D(t)(M) for the system (7.8.2).
Then D =D(T)(M).

Prof is left to the listener as an exercise. A
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Chapter 3

The Kalman criterion 111

In this chapter our object are Linear systems with bounded controls.
We consider first the control systems of the form

t=Ar+Bu, vel, |[u <1 (3.0.1)

So, the only difference with the unconstrained Kalman systems is the condi-
tion |u| < 1. One can deal in a very similar fashion with the constraint of
the form v € U C U, where U is a convex body in U.

We study the systems (4.1.1) for two reasons: because they are important
and interesting by themselves, and because they help study the unconstrained
Kalman systems.

3.1 Attainable sets for constrained and un-
constrained systems

Denote by D the attainable set D(T")({0}) of the unconstrained Kalman
system
t=Axr+Bu, uecUl. (3.1.1)

Note that by the results of the previous lecture, this set does not depend
on T > 0. By D.(T) we denote the attainable set D(T)({0}) of the con-
strained system (4.1.1). Here, the subscript ¢ stands for constrained, and the
dependence on time 71" is very real.

The basic relation between D and D(T')({0}) is this:

17



18 CHAPTER 3. THE KALMAN CRITERION III

Theorem 3.1.1 The set D.(T) is a compact convex body in the vector space
D.

First, we need to explain the meaning of the terms used. We use the term
compactness as equivalent of sequential compactness. Thus, the compactness
in Theorem 3.1.1 means that if x,, € D.(T) is a sequence of points, then there
exists a subsequence (which we denote, by abusing the language slightly, by)
Zm € D (T), which converges z,,, — x € D.(T). Convexity of a set {2 means
that € contains the entire interval [2/,2"] = {z = A2’ + (1 = A\)z", A € [0,1]}
as soon as both z’, 2" € Q. Finally, a convex € is said to be a body, if it has
a non-void interior.
We start proving Theorem 3.1.1 by observing that

1. Ue>0 %DC(T) =D

In other words, if x € D, then there exists ¢ > 0 such that ex € D.(7"). This
is true because one can reach x from 0 by using a bounded control |u| < M
(see the previous lecture). Now it remains to put € = 1/M, and reach ex by
using the control |eu| < 1.

The convexity of D.(T') is easy: Suppose, z; € D.(T), i = 1,2 and
z; = 2" (1), where |u;| < 1. Then, 522 = z%(T'), where u = "2,

The compactness statement requires some functional analysis to prove.
More precisely, we need the following (slight restatement of) Theorem of
Alaoglu-Bourbaki

Theorem 3.1.2 Suppose X = Y* is a Banach space, which is dual (is the
space of continuous linear functionals) of another Banach space. Let B C X
15 a ball in X, and b, € B is a sequence of points of B. Then, there exists
a subsequence {by,} and point b € B such that b(y) = limy,—00 b (y) for any
y €Y. (Here, b(y) means the value of the functional b in y.)

We use the Alaoglu-Bourbaki theorem in the following setup: X = L, (0,7)
is the set of bounded controls (vector-functions with value in U), V =
L(0,T) is the set of integrable vector functions, and B is the set of ad-
missible controls |u| < 1.

Now, suppose we are given a sequence x, € D.(T), and u,, € B is the
corresponding sequence of admissible controls. By Alaoglu-Bourbaki there
exists an admissible control w € B such that

T

/0 (u(s),v(s))ds = lim (um(s),v(s))ds (3.1.2)

m—0Q 0
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for any fixed integrable function v. This implies, that

T T
/ AT Bu(s)ds = lim eAT=9) Buy, (s) ds (3.1.3)
0 m—o0 0
because each component of the matrix function s — e*T=%) B is obviously
integrable. It remains to note, that the equality (3.1.3) means that the
subsequence x,, € D (1) converges to z = z*(T) € D.(T).

One might abstain from using a relatively abstract tool like the Alaoglu-
Bourbaki theorem by invoking instead more direct arguments: Consider a
sequence of admissible controls u, (¢) such that the ends x,(T") of correspond-
ing trajectories converge to point p € R™. We have to show that p = x(7T),
where z(t) is an admissible trajectory. To find x we choose a subsequence of
controls u,, such that the corresponding trajectories z,, converge uniformly on
[0,T]. This is possible by the Ascoli-Arcela theorem, because the functions
x, are uniformly Lipschitz. Denote by x the limit of x,, over the subsequence,
and prove that it is an admissible curve. We have for any A > 0

Rt h) = an(0) = 5 [ an(s)ds [ Busas

Note, that all terms in the formula, save for the last one, converge as n — cc.
The last term has the form Buv,, where |v,| < 1. Indeed, v, = % tt+h un(s)ds,
and |u,(s)| < 1. This implies, that

S

(x(t+h) — 2(t)) = %/ﬁ Ax(s)ds + Bo,

~—

where v = v(t, h) satisfies the bound |v| < 1. Therefore, by passing to the
limit ~ — 0, we obtain that at each point, where x(¢) is differentiable, we
have & = Ax + Bv, where |v| < 1. Thus, #(¢) is an admissible curve, and
p=x(T).

Now, to prove Theorem 3.1.1 it remains to deduce from the statement 1
that D.(T') has a non-void interior in D. To do so, we choose a basis e; of
the vector space D, and € > 0 such that +ee; € D.(T') for all i. It is clear,
that the convex hull of the set {+ee;} is a hypercube in D with nonempty
interior. A

Corollary 3.1.3 The system (7.5.1) is completely controllable iff the attain-
able sets D.(T) of the constrained system (4.1.1) are convez bodies.

Exercise. Prove Theorem 3.1.1 when the control bound has the form u €
U C U, where U is a convex body in U.
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3.2 Convex sets and support functions

An important tool for study the convex sets is provided by the support
function.

Definition 3.2.1 Let Q) be a subset of finite-dimensional vector space V' with
the dual space V*. The support function Hq is defined by

Hq(&) = sup(z,¢) (3.2.1)

e

Here, £ € V*, (x,€) is the value of the functional £ in x. If V = R™ we
wdentify V- oand V*, and regard Hq as a function on V.

The geometric meaning of Hg is this: the support hyperplane

{z e V;(2,8) = Ha(§)}

is a kind of “tangent” hyperplane to the boundary of {2 with the outer normal
vector €. So, Hgq(&) measures distance from the origin to the “tangent”
hyperplane if |£| = 1. Here, we put the word tangent into the quotation
marks, because {2 might not have a smooth boundary.

One can see easily that Hq in fact depends not on €2, but rather on the
closure of its convex hull conv €.

Indeed, it is clear that closing a set does not affect its support function. As
to the passing to the convex hull €2 — conv €2, one obviously has Ho < Heony o
since {2 C conv {2. The reverse inequality means that for any x € conv €2 and
€ there exists y € Q such that (y,&) > (x,€). However, any x € conv {2 can
be represented in the form

z =AMy + (1 — N)ya, (3.2.2)

where y; € Q, and X € [0,1]. One can see immediately, that both inequalities
(y;, &) < (x,€), i = 1,2 are incompatible with (3.2.2). This proves the reverse
inequality Hq > Heonw o, and, thus, the equality Hq = Heony 0.

In fact, the support functions characterize closed convex sets completely,
but we postpone the discussion till the next lecture.
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3.3 The support function of attainable set

Here, we compute explicitly the support function Hp, ). By the Cauchy
formula

T
Hop,ry(€) = sup /0 (AT Bu(s), ) ds (3.3.1)

lu[<1

One can put the sup sign under the integral sign, because the bounds |u(s)| <
1 are “independent” for different s. Thus,

T
HDC(T)(S)Z/O |u?;;|p<1(€/x(Ts)Bu(s),g) ds (3.3.2)

It is clear that

sup (e~ Bu, ) = sup (u, B*e*" T=9¢) = | B*eA T3¢

lul<1 lul<1

Note that the last equality can be regarded as a computation of the support
function of a unit ball. Therefore,

T T
HDC(T)(f) = / |B*€A*(T—s)§| ds = / |B*€A*s§| ds (333)
0 0

and our goal is achieved.

Exercise. State and prove an explicit formula for the support function of
attainable set when the control bound has the form v € & C U, where U is
a convex body in U, and initial set M is arbitrary.
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Chapter 4

The Kalman criterion IV

This chapter is faced to additional considerations ont convex sets. We speak
about convex sets, supported functions of attainable sets of linear systems,
and duality between controllability and observability.

4.1 More about convex sets

Remind that in the previous lecture we considered the control systems of the
form
t=Ax+ Bu, uweU, |ul<1 (4.1.1)

The only difference with the unconstrained Kalman systems
t=Ax+Bu, uecUl. (4.1.2)

is the condition |u| < 1. One can deal in a very similar fashion with the
constraint of the form v € Y C U, where U is a convex body in U.

Corollary 4.1.1 The attainable sets D.(T) of the constrained system (4.1.1)
are conver bodies in the attainable sets D of unconstrained system (7.3.1).

Corollary 4.1.2 The system (7.5.1) is completely controllable iff the attain-
able sets D.(T) of the constrained system (4.1.1) are convez bodies.

4.2 More on support functions

Main properties of the support function Hq(&) are:

23
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1. The support function is homogeneous of degree 1: Hqo(A) = AHq(AE), if
A>0

2. The support function is convex:

Ho(M& + (1 = N)&) < AHq(&) + (1 — M) Ha(&),
if A € [0, 1]
Exercise. Prove this.

Theorem 4.2.1 The correspondence 2 — Hgq establishes a bijection between
closed conver sets and functions with values in RU 400 with properties 1, 2.
It also establishes a bijection between compact convex sets and real functions
with properties 1, 2.

Proof. We have to restore () from Hg, and we do this by the following
criterion:

r € Q<= (2,8 < Hq(&), V¢ (4.2.1)

The proof of = is obvious. In the opposite direction we have to show that
if ¢ Q, then there exists & # 0 such that (z,£) > Hq(£). To get such a
&, we first find a closest to « point y € . There is a unique such point.
Indeed, to prove existence we take any point z € Q, and put a = |z — 2|,
K =QN{v € Vi]xr —v| < a}. Then K is a (convex) compact, and the
function z +— |x — z| is continuous and strictly convex. Its minimum is
attained at a point y € K, and at the same time y is a closest to x point
y € 2 (easy exercise). If there are two such points y;, ¢ = 1,2, then the point
y = (y1 +1y2)/2 € Qis closer to z, then y is closer to z than both y;. Thus,
the closest point ¥ exists and is unique.

Now, we put £ = x—y. If z € Q is an arbitrary point, then (z —y,&) < 0.
Indeed, otherwise we would get |y + ¢(z — y) — z|* < |y — z|? for sufficiently
small €, which, in view of y + €(z — y) € €, contradicts the fact that y is
closest to x.

Now, (2,€) < (y,&) = (,€) — (§,€) < (2,&) which proves that (z,&) >
Hq(E). A

Note also, that the computation of Hp, (1 (§) is equivalent to the following
control problem:

(x(T'), &) — sup, where z(t) is an admissible curve for (??) such that z(0) =0
Exercise. Solve the problem by using the maximum principle.

One can give a useful formula for the boundary of a convex set with a

smooth support function.
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Theorem 4.2.2 Suppose, Hq (&) is C'-smooth for £ # 0, and x(£) € 0N is

a support point for &: i.e., (x(£),€) = Hq(€). Then the point x(£) is unique,
_ 3HQ(5)'

and is given by x(§) a¢

Proof. Indeed, if we put x = ag ) then (z,&) = H(€) by the Euler theorem
(H = Hg is homogeneous), and (z,n— &) < H(n) — H(£) for any 1, because
H is convex. This implies that (x,n) < H(n) and, therefore, x € Q, and z is
a support point for &.

Conversely, if € , and (z,&) = H(§), then (x,n — &) < H(n) — H(&)

for any n. If H is differentiable this implies x = I;ég) A

4.3 Kalman duality

We consider, following Kalman, the issue of observability of a linear system.
In general, the problem is to restore the unknown curve ¢t — z(t), usually the
phase curve of a differential equation, by observing the curve t — h(xz(t)),
where h is a known given map. In the time-invariant linear setting, the
problem is:
t=Cx
{ y = Du (4.3.1)
y is the observable curve, C' and D are known matrices, and we wish to restore
x from y. The system is said to be observable if this restoration is always
possible. On the other hand, if the system (4.3.1) is not observable, this
implies the existence of undetectable states x such that De®*z = 0. Indeed,
the output is = 0 and restoration of x is impossible.
Kalman have found a relation between controllability and observability
of “dual” systems: the system (??) and the system

e
{ ’y): B*pp (4.3.2)

(Notice the connection with the maximum principle)
Kalman theorem is as follows:

Theorem 4.3.1 Let P is the set of undetectable states for (6.1.13), and D
is the attainable set (from the origin) for (7). Then, P and D are the
orthogonal complements of each other: P+ =D, and D+ = P.
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Corollary 4.3.2 The system (??) is controllable iff the system (6.1.13) is
observable.

Corollary 4.3.3 The system (4.5.1) is observable iff the rank of the matriz
K=[DDC ... DC* ']’ (4.3.3)
18 maximal possible.

We give here a somewhat exotic proof, based on the above study of linear
control systems with bounded control. It follows from the formula for the
support function of D.(T') that Hp_ 1)(§) = 0 iff £ is undetectable vector
for (6.1.13). Indeed, Hp,(ry(€) = [ |B*e¢|dt, and [, |Brer" | dt = 0 is
equivalent to

B*eA'¢ = 0 for t € [0,T).

By the principle of the analytic continuation this is equivalent to B*e4™*¢ = 0
for any ¢

On the other hand, it follows from the Corollary 4.1.1 that Hp_ 1 (§) =0
iff £ L D. Indeed, if £ = & + £ is the decomposition of &, where £ € D,
and & is orthogonal to D, then Hp (1)(§) = Hp,(1)(§'), which is > ¢|{'| since
D.(T) contains a ball centered in the origin. A
Exercise. Prove the Kalman duality by pure linear algebra, without recourse
to convex sets, and auxiliary control problems. (Hint: the space P of unde-
tectable vectors for (6.1.13) can be characterized as the maximal A*-invariant
subspace of ker B*, while the attainable set D is the minimal A-invariant
subspace of the entire phase space containing Im B. Since ker B* = Im B+
we conclude that P = D))
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Brammer’s criterion

Here, we turn to controllability of linear systems with bounded control
t=Ar+Bu, uwel, |[u <1 (5.1.1)
The only difference with the unconstrained Kalman systems
t=Ar+Bu, uecUl. (5.1.2)

is the condition |u| < 1. One can deal in a very similar fashion with the
constraint of the form v € & C U, where U is a convex body in U such that
0 is contained in the interior of U.

Theorem 5.1.4 The system (5.1.1) is completely controllable iff

1. The Kalman criterion holds (i.e., the system (5.1.2) is completely con-
trollable)

2. The spectrum of the matriz A is imaginary

Proof. We start with the necessity of conditions 1,2. The necessity of 1
is obvious. To prove necessity of 2 we assume first that there exists an
eigenvalue A of A such that ReA < 0, and show that this is incompatible
with controllability of (5.1.1).

To do this we take a closer look at the formula for the support function
of the attainable set D(T") = D(T)({0}) for (5.1.1)

T *
Hpry(€) :/0 |B*e?¢| dt (5.1.3)

27
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If n is a A-eigenvector of A* then, the complex conjugate vector 7 is a A-
eigenvector, and because of Re A < 0 the integrand in (5.1.3) is exponentially
decreasing for any & of the form an + @7, where ¢ € C. It is almost obvious
that an + @ # 0 for some a (provide details!). Therefore, Hpy(§) remains
bounded as T — oo for such £ # 0. This is incompatible with controllability.

Since controllability is invariant under the time reversal, we conclude that
Re A > 0 also is incompatible with controllability.

Thus, the necessity of 2 is proved.

Now we assume 1,2, and prove that (5.1.1) is completely controllable.

We already know that

Hpry (&) > 0 as soon as £ # 0

because this is one of the reincarnations of the Kalman criterion. What we
have to establish is that
Hpr)(§) = +o0, (5.1.4)

for any £ # 0 as T — oo. Indeed, suppose z is any fixed state vector; then
v € D(T)iff (x,8) < Hpry(§) for all £&. Denote by My = My (x) the compact
set

Mp(z) ={¢:|€| =1, (x,&) > Hpm(§)} (5.1.5)

The intersection (7)., Mz is empty because of (5.1.4), which means that
Mr = Mr(z) is empty for sufficiently large T. Therefore, for sufficiently
large T" we have

which means that = € D(T).
Therefore, (5.1.4) implies that one can reach any point from the origin.
Since our basic conditions 1,2 are invariant under time reversal, we are done.
To prove (5.1.4) we should look more closely at the explicit expression
(5.1.3), especially at the integrand

7w

where the sum is finite, all w are real, and a;,, is a vector. We can rewrite
(5.1.7) in the form

ft) = th D ajuet = th (), (5.1.8)
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where each f;(t) =3 aj,e™" is a (non-zero) trigonometric polynomial.
We will show that

T
I g/ 1 f;(t)| dt < CTIH, (5.1.9)
0

where ¢, C' are positive constants. Note, that the right-hand side inequality
here is trivial. This would imply (in view of the triangle inequality for L;-
norm) that

T
TN g/ |f(t)|dt < CTN T, (5.1.10)
0

where N is the maximum of j. In particular, this would prove (5.1.4).
Thus, everything is reduced to the inequality

T
(T g/ Hlo()] dt < CTIH, (5.1.11)
0

where ¢(t) = > a,e™' # 0 is a (vector-valued) trigonometric polynomial.
Note, that only left inequality (5.1.11) is nontrivial; the right one follows
immediately from the trivial bound |¢(t)| < C.
To prove the left inequality (5.1.11), we use the trivial estimate:

/th|¢(t)|2dt < C/th|gz5(t)|dt (5.1.12)

and our task is reduced to proving

T
/ e (t)|* dt ~ T (5.1.13)
0

The basic advantage of (5.1.13) compared to (5.1.11) is that one can compute
the integral in the former equation explicitly, which is hardly possible in the
latter one. Indeed,

T T
/ tj|¢(t)|2dt:/ t <Z|aw|2—|— > (aw,7aw,,)ei<“”—°J”>t> dt  (5.1.14)
0 0 w

(l.)’ #W”

An easy computation (exercise in integration by parts) shows that

T
/ 7@ = gt = O(TY) (5.1.15)
0
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Therefore, the only essential contribution (as 7' — oc) to the integral (6.1.10)
is given by

T
> |aw|2/ tdt = CT* (5.1.16)
w 0

which proves (5.1.13). A

We have chosen a most elementary method of proving the crucial inequa-
lity (5.1.4). In fact, a better control over the asymptotic behavior of Hpr
can be achieved by using averaging in the spirit of [1].



Chapter 6

Stochastic approach

6.1 The Least square method

Our exposition follows primarily the paper [23].

6.1.1 The problem statement
The simplest setup for the least square method (LSM) is this:

Y = Zajxj (6.1.1)
7=1

Here x; are known reals, a; are unknown coefficients of a linear form, y
is observable with an additive error A. In other words, we know exactly
n = y + A. The problem is to find a good estimator of the vector a =

(aj), j=1,...,n.
More precisely, the relation (7.1.3) describes an “experiment”, and we are
conducting many, say, N experiments

yr:Z?:1 T, N =Yr + Dy, 7 =1,..., N (6.1.2)

We define vectors y, A, z; € RN by y = (v,), A = (A,), z; = (24), and
the matrix X = (x;). Here, i =1,...,n,r =1,..., N. We will use in this
lecture a nonstandard notation

9] = 3w (6.1.3)

31
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due to Gauss for the scalar product of vectors z,y € R". This way we are
paying tribute to the inventor of LSM.
We assume that the following equivalent conditions are met:

i) kX =n
(ii)  vectors x; are linearly independent (6.1.4)

(iii)  det([wiz;]) #0

Exercise 6.1.1 Prove the equivalence of the conditions (6.5.3).

6.1.2 The algorithm

We have to find an estimator o = («vj) = (a;(n)) for the vector a = (a;), j =

1,...,n. To do so we introduce, following Gauss, the vector ¢ = e(«) by
Ep =1y — Z QT jy (6.1.5)
=1

Then we find « as a solution to the following optimization problem:

[e(a)e(a)] — 0{2})3, (6.1.6)

where the minimization is performed over all @ € R™. The condition (6.1.6)
is equivalent to the following:

n

Z[arixj]ozj =[zn,i=1...,n (6.1.7)
j=1
Geometrically, (6.1.7) says that the vector € is orthogonal to all x; (prove
this!).
Exercise 6.1.2 Prove the equivalence of the conditions (6.1.6) and (6.1.7).

Exercise 6.1.3 Prove that the vector « is defined uniquely by (6.1.6) or
(6.1.7).
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6.1.3 Properties of LSM

Assume that the observation error A,, Vr is a random variable with a zero
mean

EA, =0, (6.1.8)

then
Ea=a (6.1.9)

In other words, «; is an unbiased estimator of a;.
Indeed, it follows from (6.1.7) and (6.1.2) that

> lwis)(ay — aj) = [w:A] (6.1.10)
J
and, therefore, 3 [z;z;](Eq; — a;) = 0 which implies Ea; —a; = 0.
Now we make a next assumption about the structure of observation errors:

EAA; =6;8% i=1,...,N (6.1.11)

Then
E(; — a;) (0 — aj) = qi58°, i =1,..., N, (6.1.12)

where the matrix ¢ = G!, where G;; = [z;2;] is the Gram matrix of the
vectors ;.

To prove (6.1.12) we develop some (limited) linear-algebraic machinery.
Let L = [z1,...,x,] be the vector space generated by vectors x;. In view of
(6.5.3), the set {x;}], is a basis of L. The dual basis {u;}?_, is defined via

Next, we can interpret (6.1.10) as follows:

Zl‘j(@j — aj) = PLA, (6114)
J

where P, is the orthogonal projection on L. This immediately implies

Now, we have

E(q; — a;)(a; — aj) = E[Aw][Au;] = s Zuisujs = s’[uuy],  (6.1.16)

s=1
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(explain the second equality in (6.1.16)!) and it remains to show that

In fact one can see immediately that

which implies that

Now, (6.1.17) follows from (6.1.19).
We can say more about the size of the vector ¢, namely,

Elee] = (N —n)s?, (6.1.20)
which follows from ¢ = A — P A
Exercise 6.1.4 Prove (6.1.20).

One can interpret (6.1.20) as follows: If the covariance s* is unknown, its
unbiased estimator is given by o2, where

o =+/[eg]/(N —n) (6.1.21)

6.1.4 Gaussian case

If the error vector A is Gaussian (Gaussian case) one can say more about
properties of LSM. For instance,

Do? = E(0? — s*)* = 25* /(N — n) (6.1.22)

This can be reduced to the following statement: Put x2, = > &2, where

& are independent Gaussian variables with zero mean and unit covariance:
& e N(0,1). (6.1.23)

Then,
Dx? =E(x% —m)* = 2m. (6.1.24)

Exercise 6.1.5 Make a reduction of the statement (6.1.22) to (6.1.24), where
m =N —n.
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To prove (6.1.24) we calculate
E(x2, —m)? = Z D+2> E(E) m?. (6.1.25)
=1 1<j

We have E(£7) = 1, since & are independent Gaussian variables with zero
mean and unit covariance. Furthermore,

a\"* : a\"* e 4l
E(th) = [ = Eeités — [ = -t = = — 3
(&) (815) ‘ <8t> ‘ 8
t=0 =0
By using the above identities in (6.1.25) we obtain
2 2 m(m — 1) 2
E(x;, —m)° =3m+ ZT —m” = 2m. (6.1.26)
6.1.5 The Student distribution
In fact, in the Gaussian case we have
Y% e A(0,1). (6.1.27)

V35S
Exercise 6.1.6 Prove (6.1.27).

In case the deviation s is unknown, one can use ¢ = “.-4_ where o is defined

VTR
n (6.1.21), instead of O\‘}Ta] Then the distributional density of ¢ takes the
form -
P (e
= —— 14+ — 6.1.28
plo) = s (14 5) (6.0.28)

where m = N —n.
Exercise 6.1.7 Prove (6.1.28).
The r.h.s. of (6.1.28) is called the Student distribution.

Exercise 6.1.8 Check that the Student distribution tends (weakly) to the
standard Gaussian distribution e*%ﬁ/\/ 2w as m — Q.

One can check that it tends (weakly) to the standard Gaussian distribu-
tion e~ 2% /\/27 as m — oc.
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6.1.6 Maximum likelihood and least square

Maximum likelihood estimator might be defined in many situations. In the
case of observations (6.1.2) it is defined as follows: Consider the value p,(n)
at x = n of the density p,(z) of the random variable 1, := ). cjz;+A. Here,
n is the result of observation, and « is unknown parameter. The maximum
likelihood estimator (MLE) solves the following optimization problem:

Pa(n) — Inin . (6.1.29)
Exercise 6.1.9 Suppose that the error vector A is Gaussian. Check that the
MLE coincides with LSM.

Conditional Expectation and Least Square. Another related general
concept is that of conditional expectation. The problem is like this: Suppose,
that the unknown vector a is somehow stochastic, so that one can speak of
the joint distribution of {7, a} and of the conditional expectation E(a|n) of
a, provided that 7 is known. What kind of the probabilistic setup should it
be, in order to guarantee that E(a|n) can be found via LSM?

One possible answer is that a should be uniformly distributed in R” and
independent of A. In order to state a precise result we approximate the
uniform distribution by the Gaussian one with a very large covariance:

pal(z) = €"2(27) 2 2% e R” (6.1.30)

Exercise 6.1.10 Ezxplain why the distribution p,(x) approximates the uni-
form one.

Exercise 6.1.11 Suppose that the error vector A is Gaussian and indepen-
dent of a, where a is distributed according to (6.1.30). Check that lim,_,. E(a|n)
coincides with the LSM estimator a.

6.2 Stochastic Integrals

6.2.1 Definition of the integral

The problem we will deal with is to define the value of

/ F(s)E(s)ds & / F(s)dw(s), (6.2.1)
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where f is a suitable random function, & is the white noise, and w is the
corresponding Wiener process. This is not obvious: By the very definition of
the white noise the expression [ f(s)£(s)ds is defined only if f is a determi-
nistic function such that [ |f(s)|?ds is finite. Moreover, the natural random
function like s — w(s) are not smooth, and its sample path s — w(s,w)
might be an “arbitrary” continuous function. Since it is known that the
above sample path has an unlimited variation (the corresponding curve has
no length), there is no way to define for each w the value of [ f(s,w)dw(s,w)
by using the standard definition of the Lebesgue-Stiltjes integral. We have
to somehow take into account an interaction between different sample paths.

It turns out that a natural class of random functions that allows for a
good stochastic integration is that of non-anticipating functions.

We are given a white noise process £, and consider for definiteness only
random functions defined on [0,00). We define F<, = a(fotf(s)f(s)ds)
the o-algebra generated by fotf(s)g(s)ds, where f is a smooth determin-
istic function. Similarly, we define F>;, = a(fgf(s)g(s)ds) the o-algebra
generated by [ f(s)&(s)ds, where f is a smooth deterministic function.

The non-anticipating functions are associated with a “flow” of o-algebras
Ai, t € [0,00) (meaning that A; D A; if ¢t < s) such that

o At D fgt,
e A; is independent of F,.

Heuristically, this means that the random variable f(¢) together with all
f(r), 7 <t and &(7) is independent of all £(s), s > ¢. Thus, the complete
knowledge of f up to any time instant does not allow for any kind of pre-
diction after the instant. It is worth mentioning also that the o-algebras A,
are not canonical, and can be chosen properly for a particular problem, thus
adding extra flexibility (which is usually not very important).

6.2.1.1. Integration of simple non-anticipating functions

A non-anticipating function f is called simple if there is such natural number
n that f(t) = f(27"[2"t]). Here [x] stands for integer part of x, the maximal
integer k such that £ < z. In other words, f is constant on the intervals of

the form [£, £t} where £ is an integer.
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Definition 6.2.1 The stochastic integral I = [ f(s)&(s)ds = [} f(s)dw(s)
is defined as I =YL o frlhx + fi fin &(s)ds, where | = [2"t], fi, = f(£) and

k+1

Ag = fg £(s)ds.

Exercise 6.2.2 Check that the definition (6.2.1) is correct, meaning that it
15 independent of admissible n. If n is replaced by n+ 1 the value of I is the
same.

It is important that A, in (6.2.1) is “directed towards future” with respect
to the value f(£) of the integrand.

Proposition 6.2.3 The basic properties of the “simple” stochastic integral
are as follows:

) fot(f+g)dw = fot fdw + fot gdw,

~

. fot kfdw = k:f[f fdw, where k is a constant,
. The integral depends continuously of t, and is non-anticipating,

2
3
4. The mathematical expectation Efot fdw =0,
5

- B(fy fdw)?* = E [] f(s)*ds

Proof. The statements 1,2 are obvious. The statement 3 follows from the
fact that the Wiener process is continuous. The proof of 4, 5 is easy but
depends on non-anticipating property of the integrand in a crucial way. For
simplicity, we assume in the proof that £ = 1. The general case goes almost
verbatim, but requires more complicated notations.

If t = 1, then fot fdw = Zi;l 1Ay, and to prove the statement 4 it
suffices to show that Ef, Ay = 0. This is trivial, since due to non-anticipation
f(2) is independent of Ay, and EA;, = 0.

To prove the statement 5 we write down

¢ 2 9n1
(/0 fdw) =D RAR+2)  fifidid (6.2.2)
k=0 i<j

Now it suffices to show that
on_q

EY /A = E/tf(s)%zs, (6.2.3)
k=0 0
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and that

Identity (12.2.1) follows from EA? = 27" and non-anticipation. Indeed,
these arguments prove that

on_q on_q
EY RA}=E) 27"f (6.2.5)
k=0 k=0
and it is obvious that
on_q

e /f

To prove (12.2.5) we have to notice that the random variables ¢ = f;f;A,,
resp. A = A; are independent, for they represent past, resp. future. More-
over, EA = 0, thus, E¢A = E¢gEA = 0.

6.2.1.2. Approximation by simple functions

Suppose that f is a non-anticipating function such that || f||? := E [} f(s)?ds
is finite for any ¢. We will call this kind of functions tempered. Then f can
be approximated by simple a non-anticipating functions f,, with respect to
the norm || f||, meaning that ||f — f,|| = 0 as n — oo.

The standard construction of f, is, in fact, purely deterministic, and
goes via averaging over small intervals. For any (stochastic or deterministic)
measurable function u of ¢ € R, and a parameter h > 0 we put Apu(t) =
% ft B U s)ds. This is an approximation of u in Ly and a continuous function
(prove 11:‘) Note, that the operator A; retain the non-anticipation, because
the averaging in the definition of Ay is over the past.

Proposition 6.2.4 If u € Ly(R), then Apu € Ly(R) and Apu — u as
h — 0.

Proof. The idea is to use the Fourier transform Fu(z) = f [ etu(t)dt.
Since Ay, is the convolution operator, we have FA,u = by Fu, where bh( )
L0 esvds = 1= Now, |lu— Apul|z, = || Fu— F(Apu)

to |[(1 — bh)J’:uHL2 — 0 as h — 0. Indeed, by(y) = 1;;;’““’ — lash —0

|1,, which is equal
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for any fixed y, and |by(y)| < 1. It remains to apply the Lebesgue bounded
convergence theorem.

Now, since ¢ = Apu is a continuous function, one can approximate g in
Ly as follows: ¢;(t) = g(27Y[2%]). Thus, in the limit, first [ — oo, second
h — 0 we get the required approximation of v by simple functions.

At this point we can give the definition of the (Ito) stochastic integral for
a general non-anticipating function.

Deﬁnltlon 6.2.5 Suppose f is a non-anticipating function such that || f||* :=

E fo s)%ds is finite for any t, and f, is an approzimating sequence of simple
non- antzczpatmg functions so that || f — ful|> = 0. The Ito stochastic integral
fo fdw is defined as lim,,_, o fo fadw. Here, fo fndw is defined in (6.2.1),
and lim,,_, is taken in Lo(S2), where Q) is the probability space of the white
noise.

Finally, the main result of the lecture is as follows:

Theorem 6.2.6 The definition is correct and the defined integrals enjoys all
properties 1-5 listed in Proposition 6.2.5.

Proof is left as an exercise to the reader. (Warning! The statement 3 is
difficult, and requires a technique we have not used yet.)

The reader should not think that the above definition of the stochastic
integral is the only option. For instance, the integral sums

[2"t]— [2™t]—

S, = Z f’“+f’“+1 Z Fir1 A (6.2.6)

lead to the (different!) Stratonovich integral, which is often denoted by

/ f(s) odw(s hm Sh, (6.2.7)

and which is better in some respects than the Ito one. However, Theorem
6.2.6 is wrong for the Stratonovich integrals. There exists, however, a simple
relation between the Ito and the Stratonovich integrals.

Exercise 6.2.7 Suppose, that f(t) +f0 +f0 ds where
¢ and g are tempered non-anticipating functzons Prove that fo ) o dw(s)
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defined via (6.2.7) does exist, and is equal to f(ff(s)dw(s) + 3 fot o(s)ds. In
other words,

1
fodw= fdw+ Sodi

For example, [J w(s) o dw(s) = [; w(s)dw(s) + it.

N

6.3 Extension of Stochastic Integral

This section is devoted to an extension of the notion of stochastic integral
[ fdw from tempered non-anticipating functions f, i.e., such that E [ |f|*dt <
0o, to a wider class of functions f such that

P{/|f|2dt <oo}=1.

The main advantage of having this more general notion is that it allows to
have Tto formulas without caring about unnecessary and ugly conditions like
EfOT 57, wifi? (¢, 2(t))dt < oo. The extension comes with a price though:
One cannot guarantee that E [ fdw = 0, because the mathematical expect-
ation may not exists.

6.3.1 The Doob inequality

Here, we prove an important inequality for stochastic integrals of non-antici-
pating functions. Suppose, x(t) = fotf(s)dw(s) is a non-negative stochastic
integral. The Doob inequality is about the probability of large surges of the
function z(¢) on any bounded interval I = [a, b] of time.

Theorem 6.3.1 Suppose, that z(t) = z(0) + f[ff(s)dw(s) > 0 is a non-
negative (tempered) stochastic integral, and [ > 0 is a constant. Then,

P{supx(t) > I} < I 'Ex(b). (6.3.1)

tel

The substance of the Doob inequality is in the estimation of the maximum

of z(t) over an interval. One can see easily, that for any fized t € I we have
P{z(t) > I} <I7'Ex(t) = ["'Ex(b), where the inequality is the Chebyshev
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one, while the equality is one of the basic properties of stochastic integrals.
Now we proceed to the actual proof.
Proof. Define the following time instant

[ inf{t € I :x(t) > 1}, if the set {t € I : z(t) > [} is not empty
_{ b, otherwise

(6.3.2)
Consider the function 1.,(¢), which is 1 if ¢ < 7, and 0 otherwise. The crucial
fact is that this is a non-anticipating function since its value at time ¢ can
be determined by the behavior of the process x up to this time. One says in
this situation that 7 is a stopping time, or Markov moment. Therefore, the
stochastic integral

N / " F(s)duw(s) = 2(0) + / ey (5)£(s)du(s)

is well-defined. Now we have, on the one hand, Ex(7) = Ex(b) (explain
why!), and, on the other hand,

P{Sttelyx(t) > 1} =P{a(r) > 1}.

By the Chebyshev inequality we have P{x(7) > [} < [7'Ex(7). Combining
the Chebyshev inequality with two previous identities we arrive at the desired
conclusion. »

Exercise 6.3.2 Prove the Chebyshev inequality: P{& > 1} < I7'EE, where
& > 0 1s any nonnegative random variable.

Exercise 6.3.3 Prove the following extension of the Doob inequality:

P{supz(t) > I} <1 'Ex(b),

tel

for z(t )+ fo )+ fo s)ds, where g > 0.

6.3.2 Applications of the Doob inequality

Consider the stochastic integral z(t) = elo f()aw(s)=5 Jo 1f()IPds | By (tempered
version of) the Ito formula, this is a stochastic integral mdeed such that

2(t) = 1+ ) f(5)2(s)dw(s), at least in the case when E [} | f(s)z(s)|*ds < cc.
The latter Condltlon holds, say, when the integrand f is bounded. In what
follows we will systematically truncate possibly unbounded functions f by
using jf instead, where 5, f = fif |f| < M, and 5, f = 0 otherwise.
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Theorem 6.3.4 Suppose that f is a bounded non antzczpatmg function, and
consider the (tempered) stochastic integral x(t fo s)ydw(s). Then,

Pﬁw([mewa—gfvwWw)zMSew, (633)

tcl

where «, 3 are arbitrary positive constants.

This immediately follows from the Doob inequality (6.3.1) as applied to the
positive stochastic integral z,(t) = elo af(S)dw(s)=5 fy laf(s)ds

Now, consider a sequence of bounded non-anticipating functions f, such
that

P Uol |fu(s)Pds <27, nt oo} =1. (6.3.4)

Here, the notation P [A,, n 1 oo] stands for the probability of the event
Uis1 MNyss An, meaning that all the events A, hold as soon as n is sufficiently

large. Fix a Constant ¢ > 1, and consider the function h(x) = /2x log | log z|.

Note that h(27") = /2 "*!logn. Then,
t
P {sup / fndw‘ <Bh(27"), n? oo} = 1. (6.3.5)
tel |Jo

Indeed, consider the inequality (6.3.3), where f = f,, a = (2"*!'logn)'/?,
B =6(27""'logn)'/2. We obtain

t t
Plowp [ fudw> 5 [ 1fPds+ ) <u?
0 0

tel

which implies (explain why!) that

P{sup/0 fud < %/0 FulPds + B, n 1 oo} = 1

tel

Note now, that 227" + 8 = LH2p(27"), and in view of (6.3.4) we obtain

¢ 1+6
P{%Alhhm+ﬂ<—iJK %nTw}ZL

{Sup/ frndw < ﬂh( "), nt oo} =1.

tel

and



44 CHAPTER 6. STOCHASTIC APPROACH

The same arguments prove that
¢ 1+6
P{sup/( fn)dw<Lh( "), nToo}:
ter Jo

Summing up, we obtain

{sup / fndw‘ < ﬂh( "), nToo} =
tel

which is just another incarnation of (6.3.5).
Now, we can easily extend the stochastic integral f(f fdw to any non-

anticipating function f such that P [fot |f(s)]Pds < oo] = 1. Indeed, for any
given n one can find M such that PA, < 2", where the event A, is

{/\f FoPds =20

for [y 1f(s) = f(s)*ds = 0 as M — oo. Put g = f, and fu = g1 — gn.
We have [ |fa[2ds < 2(f, |f — gul?ds + [} |f — gus1|?ds). Therefore,

t
P U | ful?ds > 2—”“} <PA,+PA, , <277
0

From (6.3.5) we now conclude, that for (almost) any sample path of the white
Jo fn
But f = go+ Yoo fn, and the series > 7, fot Jndw converges absolutely,
and uniformly in 7. Thus, we might unambiguously put

/Ot fdw = /Ot godw + i/ot frndw (6.3.6)

which gives our final definition of the stochastic integral. It is automatically
a continuous function of the upper limit.

(27"*1) as soon as n is sufficiently large.

noise we have sup,¢;

Exercise 6.3.5 Prove (a part of) the iterated logarithm law:

P | sup [w(t)] < OK(T), T+ oo

t€[0,T7]

=1

)

where 0 is an arbitrary constant > 1, and h(T) = (2T loglog T)*/2.
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Hint: Use the same method as used in proving (6.3.5).
The full iterated logarithm law is the following statement:

Theorem 6.3.6 The set of limit values of w(T)/h(T) as T — oo coincides
with the interval [—1,1] for almost every sample path of the Wiener process.

It is highly nontrivial to prove, but accessible with the above technique. First
proved by outstanding Russian mathematician A.Ya. Khinchin in 1923.

6.4 Ito’s formula

6.4.1 Statement of the Ito lemma

Now we come to the main formula of the stochastic calculus which is an
analog of the chain rule (f(g(t)) = f'(g(t))g'(t)) of the ordinary calculus. It
is, however, much deeper than the deterministic analog.

First, introduce a convenient notation: Consider the stochastic non-anti-
cipating process

z(t) = z(0) + /Otf(s)dw(s) + /Otg(s)ds, f,geR” (6.4.1)
We are going to write instead of (6.4.1)
dz(t) = f(t)dw(t) + g(t)dt, (6.4.2)

so that the Newton—Leibnitz formula d [w = w, where w = f(t)dw(t) +
g(t)dt, holds by definition.
By using coordinates, (6.4.1) might be rewritten as dz; = fidw + g;dt.
Similar, but different notion of the differential is associated to the Stra-
tonovich integral, so that we will write

dx = fodw+ gdt (6.4.3)

instead of
z(t) = x(0) +/O f(s) odw(s)+ /0 g(s)ds. (6.4.4)

This suggests the following question. Suppose, u is a smooth function.
What is the differential of u(z(¢))? In other words, is the class of non-
anticipating processes represented as the Ito integrals closed under superpo-
sition with f, and, if this is the case, how to represent u(z(t)) as a stochastic
integral?
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Note that the process x is, generally speaking, vector valued, so u is
defined on a finite-dimensional vector space.

Theorem 6.4.1 (Ito formula) Suppose, that a function u(t,x), wheret € R,
x € R", is such that the partial deriatives

ou ou 0%u

U = —, U = —, Uj; = —F—
’ allfi, “ &vzax]

ot’

are continuous on R x R™. Then, the superposition u(t) = u(t,z(t)), where
x is the stochastic integral (6.4.1) is again a stochastic integral, and its dif-
ferential is given by

n 1 n
i=1

ij=1
Here, uy = ug(t, x(t)), u; = wi(t, x(t)), wiyy = wij(t,x(t)), duvidz; := f; f;dt.

In fact, at the moment, when we have had defined the Ito integral only for
tempered non-anticipating function, the above statement is not absolutely
true, for the integrand like > "  w;dx; might not be tempered. Still the
above Ito formula is valid, but requires an extension of the notion of the
stochastic integral, which we postpone. The “tempered” version of the Ito
formula is this:

Theorem 6.4.2 (Tempered Ito formula) Suppose, that a function u(t,z) is
such that the partial derivatives

ou ou 0%

825’ ' 8@’ K 8@8%

are continuous on R X R", and the mathematical expectation

E/OT Zzzuzfz

is finite for any finite T. Then, the superposition u(t) = u(t,z(t)), where
x 1is the tempered stochastic integral (6.4.1) is again a tempered stochastic
wntegral, and its differential is given by

U =

(t, w(t))dt

n 1 n
=1

1,7=1
Here, uy = ue(t, x(1)), u; = wi(t, z(t)), wij = uj(t,x(t)), dwidx; := f; f;dt.
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In what follows we will not dwell on “tempered” versions of theorems, which
become valid without this assumption after suitable extension of the notion
of stochastic integral.

The main difference between the usual and the stochastic calculus is the
presence of the summand %szzl u;jdr;dz; in (6.4.5). Its appearance can
be heuristically explained as follows: If A" = z(t + h) — x(t), then AFA"
has order of magnitude h, not h? as in the deterministic setup. For example,
E(w(t+ h) — w(t))? = h.

However, in the Stratonovich case, the stochastic calculus takes a familiar
form:

Theorem 6.4.3 (Ito—Stratonovich formula) Suppose, that a function u(t, x),
where t € R, x € R™ enjoys the same properties as in the previous theorem.
Then, the superposition u(t) = u(t,x(t)), where x is the stochastic integral
(6.4.1) is again a stochastic (Stratonovich) integral, and its differential is
given by

du = wdt + Z u; o dz;. (6.4.7)

=1

Of course the above two forms of the chain rule are compatible:
Exercise 6.4.4 Deduce the Ito—Stratonovich formula from the Ito formula.

(Hint: [ w,; o dz; = [widz; + sdudy; = [udz; + %ZQ uijdr;dx; because of
the definition of the Stratonovich integral, and the Ito formula applied to u;)

6.4.2 Vector version of the Ito formula

We are going to use widely the rather obvious vector counterpart of (6.4.2)

where w(t) € R™ is the vector-valued Wiener process, meaning that w(t) =

(wi(t),...,wn(t)) € R™, where w; are independent scalar Wiener processes.
In other words, in the equation

dz(t) = f(t)dw(t) + g(t)dt, (6.4.8)

this time, f(¢) is n X m matrix, and not a vector as in (6.4.2). Then, the
vector Ito formula takes the following form:
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Theorem 6.4.5 Suppose, that a function u(t,z), where t € R, x € R”
enjoys the same properties as in theorem 6.4.1. Then, u(t) = u(t,z(t)),
where x is the stochastic integral (6.4.8) is again a stochastic integral, and
its differential is given by

n 1 n
i=1 1,j=1

Here, up = w,(t, 2(t)), wiy = wi(t,(t)), wiy = wi;(t, (1)), doidx; = (f;, f;)dt,
where the scalar product of rows f;, f; of the matriz f is given by (f;, f;) =
2?21 fzk:f]k:

In other words, the multiplication table for stochastic differentials is
dwidwj == (Sijdt, dwldt =0= (dt)Q

Again, the Stratonovich version is this: The governing equation is

dz(t) = f(t) o dw(t) + g(t)dt, (6.4.10)

and then .
du = w,dt + Z u; o dx;. (6.4.11)

i=1

Exercise 6.4.6 Deduce the Stratonovich formula (6.4.11) from the Ito for-
mula (6.4.9).

6.4.3 First applications of the Ito formula

We present some important corollaries of the Ito formula via a sequence of
exercises.

Exercise 6.4.7 Show that stochastic integrals are closed under multiplica-
tion: if dx(t) = f(t)dw(t) + g(t)dt, dy(t) = h(t)dw(t) + k(t)dt, then d(zy) =
xdy + ydx + dxdy, where dxdy = fhdt.

(Hint: apply the Ito formula to u(x,y) = zy.)

Exercise 6.4.8 Find fot wdw and fotw o dw.
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(Answer: [ wdw = tw(t)? — L, [Jwodw = lw(t)®. Hint: apply the Tto
5

formula to u(z) = 327)

Exercise 6.4.9 Find Eexp (fot fdw — %fot fgds).

(Answer: Eexp (f(f fdw —1 Jf%ls) = 1. Hint: apply the Ito formula to

z(t) = fot Jdw—3 fot f?ds, and u(z) = exp x in order to show that du = fudw.
Then, apply the basic property of stochastic integrals: E [ gdw = 0 for any

g-)
Define the Hermite polynomials H, (¢, z) via the generating function

S 1
Z 2"H, = exp (zx - 52225) : (6.4.12)

n=0
Exercise 6.4.10 Show that H,(t,z) = % exp(a?/2t) 2 exp(—a?/2t).
Hint: exp (zz — 32%t) = exp(2?/2t) exp (_%)

Exercise 6.4.11 Prove that

H(t, w(t)) = /0 Cdw(ty) /0 " dulty) . /0 "ty (6.4.13)

Note that (6.4.13) might be symbolically expressed as

nUH, (1, w(t)) :/Ot/Ot.../Otdw(tl)dw(tg)...dw(tn). (6.4.14)

Hint: This is equivalent to

gz” /Ot duw(ty) /Ot1 dw(ty) ... /Otﬂ_1 dw(t,) = exp (zw(t) — %z%) :

(6.4.15)

In order to prove (6.4.15) show that both sides satisfy the same stochastic

differential equation du = zudw. Then apply the standard existence and

uniqueness theorem for stochastic differential equations (to be lectured later).
Another approach is to derive from (6.4.12) that

OH, 10°H Y
n 20 and S g
ot 2o, !

0x
Then apply induction w.r.t. index n.
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Exercise 6.4.12 Prove that

9 5mn
/H H,(t,x)e >da = o (6.4.16)

V2mt
Hint: [ H,(t,2)H,(t,x)e” 5% dx = EH,(t,w(t))Hn(t,w(t)). Then, use the
result of the previous exercise together with the basic properties of the

stochastic integrals.
Another approach is to use

/H (t, ) Hyp,(t, x)e™ 2 dx = /e(ZJ“w)f”_é(zzJ“w?)te_gtdx =

1,22 _a? (@=(fw)t)®
:etzw/e(z—l—w)m 5 (22w +2zw)t€ 2td1}:€tzw/€ o dr = e*\/2rt

Exercise 6.4.13 Prove that

S () Hy(ty) = 2720, (1, 2

3 s ) (6.4.17)

Hint: Put w(t) = w’(t);\/%””(t), where w'(t), w"(t) are independent Wiener

processes. Then, w(t) is a Wiener process. Apply (6.4.14).

Exercise 6.4.14 Suppose, w(t) = w'(t) + iw"(t) € C, where w', w" are
scalar (real) independent Wiener processes. Let f(z) be an entire (everywhere
holomorphic) function. Then f( ()) = W(T(t)), where W is a complex
valued Wiener process, and 7(t fo |f'(w(s))|?ds is a new time scale, where
[ is the complexr derivative off

Hint: Prove first that df (w(t)) = f'(w(t))dw(t).

6.4.4 Proof of the (tempered) Ito formula

We shall confine ourself with proving the Ito formula in case z(t) = w(t),
and u(t, x) = u(z) has uniformly bounded 3-rd differential. The general case
does not require new ideas in order to conduct a proof.
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We also consider only the case ¢t = 1 for simplicity. Then, the result to
be proved is

u(w(1)) — u(0) :/0 %%(w(t))dt%—/o g—Z(w(t))dw(t). (6.4.18)

The temperedness assumption boils down to Efo x‘2 (w(t))dt < oo. The
idea is to write down

2n 1
u(w(l)) —u(0) = Z (U1 — ug), (6.4.19)
k=0
where u, = u(w(L)), and
du 0*u
Uk = Uk + (@) , Ay + (W> Az + Ry, (6.4.20)

where Ay = w(&t) — w(£), and the remainder R, < M|A,[* because of
our assumption on boundedness of the 3-rd differential of w.

Now, it remains to prove that

2n—1

JE&Z( ) £= g—Z(w(t))dw(t), (6.4.21)

— (PN o [PPPu
,}E’EOZ <ﬁ>kAk_ 0 a332( w(t))dt, (6.4.22)
k=0
and
2" —1
lim » " Ry =0. (6.4.23)
k=0

Here, all the limits are to be understood in the mean square sense.

We notice immediately, that (6.4.21) holds by the definition of the stochas-
tic integral. To prove (6.4.23), we note that | Yo ' Ry|| < 2" maxy || Ry,
while ||R;|| < C272". Here, ||| stands for the Ly-norm, and C'is an absolute
constant. Thus, || 32 " Ry < C272", and (6.4.23) is proved.

To prove (6.4.22) we note that by deﬁnition

2" —1
, Pu\ ., L o%u

0
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and it remains to prove that

2" —1 82u
lim > <@>k (A2 —27™) =, (6.4.25)
k=0

Put v = al,), = A2 — 27" We have
n—1 2 ogn g
E|) wér| =Y ElulElgf (6.4.26)
k=0 k=0

because of non-anticipation property of v, and the fact that E¢, = 0. The
right-hand side of (6.4.26) has the form C272" 3" "EJv|?> and tends to
zero.

Exercise 6.4.15 The above statement is based on the inequality
E|v|? < C (6.4.27)
where C does not depend on k. Prove (10.1.4).

Hint: v, = qu(:n(z’fL )), where ¢ is a Lipschitz continuous function. This reduces

our task to proving the inequality
E|x( )\2 < C. (6.4.28)

This, in turn, follows from (6.4.2) and the basic property

‘/ﬁm —E [ I7(:)Pds

of stochastic integrals.

6.5 Stochastic Differential Equations

6.5.1 The Cauchy Problem

This is the following problem: We are given formal equation and initial
condition

dz(t) = f(t,z(t))dw(t) + g(t, z(t))dt, x(0)=n, (6.5.1)
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where z(t) € V =R", n is a random vector of V, independent of the white
noise £(t) = w(t) for t > 0, w(t) € W = R™ is the m-dimensional Wiener
process, f(t,x) is a n x m-matrix, ¢g(t,z) € V. The equation (14.1.15) is
called stochastic differential equation (SDE), or rather the Cauchy Problem
for SDE. The solution x(¢) is, by definition, a non-anticipating function such
that

:E(t)—n:/o f(s,ac(s))dw(s)+/0 o5, 2(s))ds. (6.5.2)

In more advanced courses this notion is called strong solution in order to
distinguish from weak solution, a notion we are not going to deal with. In fact,
the reasons for introduction of weak solutions are quite sound. Primarily, this
is because known results on existence and uniqueness of strong solutions are
not always adequate.

Still, here, we confine ourself with stating and proving a direct analog of
the Cauchy-Lipschitz theorem for Ordinary Differential Equations.

Theorem 6.5.1 Suppose that the functions f,g are non-anticipating func-
tions of t, which are Lipshitz w.r.t. x. Suppose also that the following bound
holds: The (squares of) Ly-norms

T T
E\n\Q,/O E\a(t,n)]th,/O E|b(t,n)|*dt are bounded (6.5.3)

for any fized finite T. Then, there exists a unique (strong) solution to the
Cauchy problem (14.1.15).

Corollary 6.5.2 In particular, if f = f(t) does not depend on x, while g has
the form g(t,z) = A(t)x, where A(t) is a matriz, then, there exists a unique
(strong) solution to the Cauchy problem (14.1.15). Moreover, the solution is
given by the Cauchy formula:

z(t) = ®(t,0)n + /Ot O(t,s) f(s)dw(s), (6.5.4)

where ®(t, s) is the fundamental matriz, i.e., solution to

0
a@(t, s) = A(t)®(t,s), P(s,s) =id
Exercise 6.5.3 Find the differential equation satisfied by ®(t, s) as the func-

tion of s.
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Exercise 6.5.4 Prove corollary 6.5.2.

Similarly, one can define solutions to the Stratonovich counterpart of (14.1.15)

dx(t) = f(t,2(t)) o dw(t) + g(t, x(t))dt, z(0) = n, (6.5.5)
which is equivalent to the Ito equation

s (0) = £ O 0) + (55 e, 0) + (1200 ) i a(0) =

(6.5.6)

where summation is tacitly performed over repeated indices.

Exercise 6.5.5 Give a precise definition of the solution to the Stratonovich
equations, and explain why equations (6.5.6) and (6.6.7) are equivalent.

Thus, the standard existence and uniqueness theorem for the Stratonovich
equations involves Lipshitz bounds on derivatives of f. Still, in many situa-
tions, the Stratonovich equations are more relevant than the Ito ones.

6.5.2 Proof of the Cauchy—Lipschitz theorem for SDE

We begin with the uniqueness clause. Suppose that x(t), y(¢) are two strong
solutions to (14.1.16). Then, we get the following equation for the difference

2(t) = x(t) — y(1):

¢ ¢
40 = [ (Fs12(6) = S0 duls) + [ (gls.als) — g(s.9())) ds.
' ' (6.5.7)
and for the variance ¢(t) = E|z(¢)|* we obtain, by using inequality |[A+ B|? <
2(|A|* + |BJ?) (prove it!), that

2

() < 2E +

(f(s,2(8)) = f(5,9(s))) dw(s)
F(g(s,2(s)) — g(s,y(s))) ds

Now, by basic properties of stochastic integrals

(6.5.8)
+2E

E

—E/Wfsx F(s,y(s) P ds,
(6.5.9)

A(ﬂ&ﬂ@%ﬁ@w(ﬂdw
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and by the Lipschitz condition

E/o 1f(s,2(s)) — f(s,y(s)|*ds < C/O o(s)ds. (6.5.10)

Similarly, by the Cauchy inequality

B|f} (gls,(5)) — gls,u(s))) ds| < B [} (s, (5)) — gls.u(s)) ds

<tC [ ¢(s)ds
(6.5.11)
We obtain for the positive function ¢ on any bounded time interval the
inequality of the form

H < C/thﬁ(s)ds, (6.5.12)

where C' is a constant. Now, the Gronwall inequality proves that ¢ = 0, and
the uniqueness part is established.

Exercise 6.5.6 Prove the following Gronwall inequality: Suppose that a
non-negative function ¢(t) satisfies

<A+O/ s)ds it 0 <t<T. (6.5.13)

Then,
o(t) < Aexp(Ct) if 0 <t <T. (6.5.14)

To prove existence, we use the Picard iteration scheme:
zo(t) =1, (6.5.15)

and
Ty (l) —fz/o f(s,zn(s))dw(s) +/0 9(s, z,(s))ds. (6.5.16)

Then, for the differences z, = x,.1 — z,, we obtain an analog of (6.5.7):

= Jo (f(5: 2041(8)) = f(s.2(5))) duw(s)+

fO S x"+1 )) - g(S,xn(S)))dS,

(6.5.17)
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and for their variances ¢,(t) = E|z,(#)|* by the same arguments as in the
uniqueness part we get the inequality

bni1(t) < C/Ot On(s)ds, (6.5.18)

valid in any given bounded interval of time [0,7]. Now, (6.5.18) gives by

induction that
cn

On(t) < A—pm. (6.5.19)

Note, that the base of induction is provided by condition (6.5.3).

Exercise 6.5.7 Prove the following inequality: Suppose that a sequence of
non-negative functions ¢, (t) satisfies (6.5.18). Then, (6.5.19) holds (with
some constants A and C).

The basic inequality (6.5.19) proves that the sequence x,, converges uniformly
in any given bounded interval of time as the sequence of continuous functions
on [0,00) with values in square integrable random variables. This allows us
to pass to the limit in the equation (6.5.16), thus completing the existence
proof.

Exercise 6.5.8 Conduct detailed proof of the existence of v = lim,,_ o0 Ty,
and the equality

£(t) 1 = / £(5,2(s))duw(s) + / 9(5, 2(s))ds.

6.5.3 Dependence on parameters

Here, the basic result is as follows: Suppose that the conditions of the
Cauchy-Lipschitz theorem 6.5.1 are met, and, moreover, the coefficients f, g
are smooth functions of the space variable z, depending smoothly on a pa-
rameter € € (—¢g,€p). Similarly, the initial condition n = 7(e€) is smooth
w.r.t. €. Then, the corresponding solution z(¢;¢) of the Cauchy problem
smoothly depends on € as well. Moreover, the derivative X () = Zz(t;¢)
satisfies linear SDE with non-anticipating coefficients

x = (Liwopx + ety dw+ (G 00)x + F0.00)

(6.5.20)
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where H = %77(6). By using indices we can rewrite (6.5.20) in a more explicit
form:

X = S (Y a() + S Yt #(0) X, ) duwyt
Iy G (t, (1) Xodt + G2 (t, (1)) dt, (6.5.21)
X(0) = H,

To prove (6.5.20) one might consider the equations (14.1.15), (6.5.20) as a
system of SDE for X = (z,X). The Cauchy problem for X has a unique
solution by Theorem 6.5.1. Moreover, this solution is the limit of Picard
iterations X,, = (z,, X,,), and at each step of the iteration process we have

X,(t;e) = %xn(t; €). (6.5.22)

This implies that x = lim x,, is differentiable w.r.t. €, and the derivative is
given by X = lim X,, (provide detail!).
An important example of SDE with a parameter is

dz(t) = f(t,x(t))dw(t) + g(t, z(t))dt, z(0) = =, (6.5.23)

where the deterministic initial vector x serve as a parameter. From the
preceding arguments we conclude that the map x — x(t), where the time ¢ >
0 is fixed, is a smooth map, in fact, a diffeomorphism. Note, that the map ¢ —
x(t) is rarely smooth, e.g., the brownian path is nowhere differentiable. As an
application, consider a smooth function ¢ and the function z — E¢(z(t)).
This function is smooth. In fact, the same is true for the function t —
E¢(x(t)) in spite of the mentioned fact that the diffusion prevents smoothness
of the sample path ¢ — z(¢). Indeed, consider the stochastic differential of
é(x(t)). We obtain, according to the Ito formula,

d d
SBo(e(1)) = Byo(a() = B(LH)(a(0), (65.24)
where L is the second order partial differential operator
def 0 1 82
= i— + = e ik =——. 5.2

Since ¢ is smooth, the right-hand side of (6.5.24) is a continuous function
of ¢, and thus, the function ¢ — E¢(z(t)) is C'-smooth. By iteration of the
above arguments we get the desired C'°*°-smoothness of the function.
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6.6 Diffusion Processes

Diffusion Process i.e. Infinitesimal Operator is the same thing as solution to
a stochastic differential equation

dz(t) = f(t,z(t)dw(t) + g(t, z(t))dt, z(s) = x, (6.6.1)

Here, s, resp. « is initial time, resp. initial position of the process. We
assume in what follows that the coefficients f(¢, ), which is a matrix, and
g(t,x), which is a vector, are sufficiently smooth, so that, in particular, the
Lipshitz condition from the standard existence & uniqueness theorem of the
previous lecture holds.

Note, that if f = 0 we are talking about deterministic motion along
trajectories of an ordinary differential equation. It is well-known that in this
case there is a close connection between this dynamic system

z(t) = g(t,z(t)), z(s) = z, (6.6.2)

and the partial differential equation
Ju Ju
55 (50) + Z iy (5:0) =0, (6.6.3)

which is dual to the equation

o _

= = .6.4
5 = 0P (6.6.4)

describing evolution of the density of particles moved by the phase flow of
(6.6.2). If the vector field b is sufficiently regular, say, if the Cauchy-Lipschitz
condition holds, one can write down the general solution of (6.6.3) in terms of
the phase flow. Namely, suppose that the function ¢(x) = u(7, z) is known
for some T'. Then,

u(s,z) = ¢(z(T)), (6.6.5)

where z(t) is the solution of (6.6.2). It is very easy to check (6.6.5) at least at
the formal level. Indeed, consider the function ¢ +— wu(¢, z(¢)). Its derivative
is

O 1, 2(0) + > i, (0)) (1),
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which is zero by (6.6.3). Therefore, u(s,z) = w(z(T),T) = ¢(z(T)). Now we

indicate the counterparts of these facts for SDE (14.1.15). To do this we will
use a very important second order partial differential operator

2
EdefZgZ “+3 Zflkfjkaa (6.6.6)

xlaxj

which is called the infinitesimal operator or generator of the diffusion process
(14.1.15). We indicate immediately, that for the Stratonovich equation

dz(t) = f(t,2(t)) o dw(t) + g(t, x(t))dt, x(s) = =, (6.6.7)

the infinitesimal operator takes the form

L= Zgz 43 Z(ka )2. (6.6.8)

In (6.6.6), (6.6.8) the indices 4, j € [1,n], k € [1,m]. We need also the adjoint
operators L£*, defined by the identity

/Eu z)dr = /u(x)ﬁ*v(x)dac,

where the functions u, v are smooth and have compact support. The formula
for £* has the form

Z a A9t 5 Z a flkf?k; (669)

meaning that
) 9 1 o2
£ru== 2 g0 00+ 3 2 g, Uit
i ¢ ijk L

In the Stratonovich case the formula takes the form

2
0 0
= 50t % > (Z %fik:) : (6.6.10)
i ¢ k i ¢



60 CHAPTER 6. STOCHASTIC APPROACH

The stochastic analog of (6.6.3) is

0
a—Z(s,x) + Lu(s,z) = 0, (6.6.11)
while the stochastic analog of (14.1.3) is
0 ]
Sty = Lp(t.y). (6.6.12)

The analog of (6.6.5) is this:

Theorem 6.6.1 Suppose that the coefficients f, g are smooth, and u(s, ) is
a smooth solution to (6.6.11) such that the derivatives du/ds, and 0*u/dx;0x,
are bounded. Then,

u(s,z) = Eo(x(T)), (6.6.13)

where s < T, and u(T,z) = ¢(x). Conversely, if ¢p(x) is a smooth bounded
function, then the function u defined by (6.6.13) is a smooth solution to
(6.6.11).

Proof follows the same basic pattern as that of (6.6.5). Put u; = u(t, z(t)).
Then, by the Ito formula,

duy = (%(t,x(t)) +,Cu(t,:r(t))> dt + <%,f(t,x(t))dw(t)> . (6.6.14)

which is equal to (2%, f(t,2(t))dw(t)). Here, (,) stands for the Euclid scalar
product. Integrating first over [s,T], and then taking the mathematical ex-
pectations, we get that uy; = Euy, because the stochastic integral

[ (G seatnante))

has vanishing mathematical expectation. In order to prove (6.6.13) it remains
to note, that us = u(s, z) and uy = ¢(x(T)). Conversely, if ¢(z) is a smooth
bounded function, and the function u = u(s,z) is defined by (6.6.13), then
it is a smooth function (prove this, by using the preceding lecture!) with the
following extra property: Suppose that £ is (an arbitrary) random variable
measurable w.r.t. the o-algebra F; = o(w(7)), where 7 < ¢t. Then, &u; =
E(&ur|F;) (explain why!), and

E(édu) = 0 = B (g (%(t, () + L’u(t,x(t))) dt) |
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which implies that 2%(¢,z(¢)) + Lu(t, z(t)) = 0, because £ is arbitrary. If we
put t = s now, we arrive at the desired conclusion that u is a smooth solution
to (6.6.11). »

Now we turn to the differential equation satisfied by the distributional
density of the random vector z(¢). This is a Schwartz distribution p(¢, y; s, )
with two groups of arguments: (s,z) is initial time and position, and (¢, )
is final time and position. Our previous theorem says about differential
equations satisfied by p with respect to the second group of variables. Our
next theorem is about p considered as a function of the first group of variables.
In other words, the distribution p is defined by [ p(t,y)u(y)dy = Eu(z(t)),
where u is a test function (smooth with compact support).

Theorem 6.6.2 The (generalized) function p(t,y) = p(t,y;s,z) is a solu-
tion to (6.6.12) in the region {t > s} such that p(s,y) = é(x — y).

Proof. Indeed, fix a test function u, and consider [ p(t,y)u(y)dy = Eu(x(t)).
We have, first

</ %p(t, y)U(y)dy> dt = dEu(z(t)) = Edu(x(t)). (6.6.15)

Second, by the Ito formula, the right-hand side is
ELu(z(l)) = / p(t, y) Luly)dy,

and third, [ p(t,y)Lu(y)dy = [ L*p(t, y)u(y)dy. Summing up, we have

/ %p(t,y)U(y)dy = / Lop(t, y)uly)dy

for any test function u. This means that (6.6.12) holds for p. »

An interesting question is the conversion of the above Kolmogorov theo-
rem. I do not know a completely satisfactory answer. The following results
will do in the non-degenerate diffusion case.

Theorem 6.6.3 Suppose, that the diffusion coefficient f f* is non-degenerate,
meaning that > fifix&i& > CIE]* for any & € R™. Then, the minimal so-
lution u(t,y) to (6.6.12) in the region {t > s} such that u(s,y) = é(x — y)
coincides with p(t,y) = p(t,y; s, ). »
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The above theorems are characterizations of some simple stochastic func-
tionals of a diffusion process in terms of Partial Differential Equations. Now
we turn to a more complicated functional

B (a(t))el: VO,

which is a continuous linear functional of the test function ¢, and, thus, can
be written as

/ plt, ) d(y)dy = Bop(x(t))el Vrtoir (6.6.16)

We are looking for the governing PDE for the (generalized) function p. The
answer is given by the beautiful and important Feynman—Kac formula.

Theorem 6.6.4 Assume (for simplicity) that the potential V is a bounded
continuous function. Then,

%(n W) = (L5 + V) plt,y), (6.6.17)

where L* is the adjoint of the infinitestmal operator L.

Proof does not differ essentially from that of Theorem 6.6.2 and is left as an
exercise to the listener. »

In fact, for our main applications to the Kalman filtering we need to study
the case, when V' is not at all bounded. More specifically, the functional to
be studied is

/ p(t,y)d(y)dy = Bep(w(t))e s Jo MOPdrelo v,

where W is a Wiener process independent of the Wiener process w related
to the process z, while h(7) is a shortening to h(7,z(7)). In this case, the
governing PDE for p(¢,y) is a stochastic PDE first derived by M. Zakai.
Namely, it is

dp(t,y) = L*p(t, y)dt + p(t, y){h(t, y), dW (1)) (6.6.18)
in the Ito form, and
dp(t.y) = (c* - §|h|2) ol y)dt + p(t, ) (Bt ), AW (D) (6.6.19)

in the Stratonovich form. Note, that (6.6.19) is formally identical to (6.6.17),
while (6.6.18) is not.



Chapter 7

Pole placement

7.1 The Cauchy formula

We discuss another incarnation of the complete controllability for linear sys-
tems: the pole placement. The pole placement problem is as follows: Suppose
we are given a linear control system

&t =Ar+ Bu, uel. (7.1.1)
in the phase space V= R"™. Then, if we define a linear feedback by
u=Cx (7.1.2)
then we arrive at a linear dynamic system
&= (A+ BC)z, (7.1.3)

and we might choose feedback so that the resulting dynamic system has
desired properties. If the desired property is that the spectrum of (A+BC) is
a given set, one talks of the pole placement. Here, the pole can be understood
as a pole of the resolvent of the matrix A + BC'.

In fact, it is better to understand the spectrum of a matrix as a (positive)
divisor of points (in the complex plane C) with multiplicities, than just as
a set. Another way to specify the spectrum of a matrix D is to specify its
characteristic polynomial pp(s) = det(s—D). This is a real monic polynomial
(i.e., with the coefficient 1 for higher power of s) of degree equal to the size
of the matrix D.

63
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We say that the system (7.1.1) allows for an arbitrary pole placement if
for any given monic polynomial p of degree n = dim V', one can find a linear
feedback u = C'z, so that psypc = p.

Theorem 7.1.1 System (7.1.1) allows for an arbitrary pole placement iff it
1s controllable.

We prove first the necessity of controllability.

Suppose, that the system (7.1.1) is not controllable. Then, there exist
a proper subspace D C V which is A-invariant and contains W = BU.
The spectrum of A + BC' is the union of that of A+ BC in D and in the
factor-space D = V/D. We notice, that the action of A+ BC in D does not
depend on C, and coincides with that of A (prove this!). Therefore, part of
the spectrum of A + BC' does not depend on feedback, and cannot be made
arbitrary.

To prove the converse statement we reduce our task to the scalar comp-
letely controllable case. The reduction follows immediately (prove it!) from
the general lemma [6]:

Lemma 7.1.2 If the system (7.1.1) is controllable, then there exists a vector
be W = BU, and a feedback matriz C' such that the system

t=(A+BC)x+bv,veER (7.1.4)
with a scalar control, is controllable as well.

Proof is left to the listener as an exercise. A
(Hint: Take an arbitrary 0 # b € W = BU and consider maximal d such that
dim[b, Ab,..., A% 0] = d. If d = dimV, we are done. Otherwise, put Cb =
CAb=...=CA%2p =0, and CA%'b =/, where V' ©f By is not contained in
[b, Ab, ..., A%"1b]. This is possible because of controllability, and if we substitute
A" = A+ BC for A, the value of d will increase.)

Now, let us look more closely at the scalar control case.

In the general case,

det(s — (A+ BC)) = det((s — A)(1— (s — A)'BC))

= det(s — A)det(1 — C(s— A)"'B), (7.1.5)

where we used the identity det(1,, — af) = det(1,, — fa) valid for any pair
a,  of n X m,m x n matrices (prove it! Hint: Consider

lp, B
det( o 1n>
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and prove that it is equal to both det(1,, — ) and det(1,, — fa)). In the
scalar case det(1—C'(s—A)™'B) = 1-C(s— A)~' B, where the 1 x 1 matrix in
the right-hand side is identified with a scalar (and B, resp. C' with column-,
resp. row-vector).

Therefore, in the scalar case

det(s — (A + BC)) =det(s — A) — CF(s,A)B, (7.1.6)

where F(s, A) = [det(s — A)](s — A)~'. (Note, that CF(s, A)B is a scalar!)
We notice that in the scalar case the pole placement is a linear (w.r.t. C)
problem.

Denote the expression CF(s, A)B by ¢c(s). We need to prove that the
linear map C — ¢¢ is onto polynomials of degree < (n—1). This is equivalent
to the statement that C' +— ¢¢ has no kernel (why?). To prove this we observe
that for an arbitrary polynomial (or analytic function) f one has
1 odc(s) f(s)ds

CHAB = O [(s— A)y ' f(s)dsB = —

7.1.7
271 Jpr 271 Jp det(s — A)’ ( )

where the contour T" surrounds the spectrum of A. If ¢ (s) = 0, and f is any
polynomial, then, by virtue of (7.3.3), C'f(A)B = 0. However, the vector
f(A)B for a suitable choice of f can be arbitrary, because of controllability.
Thus, if ¢¢(s) = 0, then C' = 0.

Thus, ¢¢ can be an arbitrary polynomial of degree n — 1, and, in view of
(7.1.6), det(s — (A + BC)) can be an arbitrary monic polynomial of degree
n. A

This is a polynomial matrix function of s, A of the form

F(s,A) = Z s, 1 5(A), (7.1.8)

where ¢; is a monic polynomial of degree j. Therefore, because of controlla-
bility, e; = ¢;(A)B, j € [0,n — 1] is a basis in the phase space V' = R". One
can, therefore, choose the feedback C' so that Ce; is any given sequence of
reals ag, k = 0,...,n — 1. This means that C'F (s, A)B can be an arbitrary
polynomial of degree n — 1, and, in view of (7.1.6), det(s — (A + BC')) can
be an arbitrary monic polynomial of degree n.

We prove the converse statement in the following simplified form: Let A
be a subset of the complex plane C such that #A = n, and A — X is invertible



66 CHAPTER 7. POLE PLACEMENT

for any A € A. Suppose, that the system (7.1.1) is controllable. Then, there

exists a feedback matrix C' such that the spectrum of A+ BC coincides with
A

Consider the subsets Wy = (A—\)"'W, where A € A. We want to choose
a basis &, € W) of the phase space V = R". To show that this is possible
we have to prove that

1. The sum of W), coincides with V.

2. There is no linear relations of the form

D axé =0, (7.1.9)

AEA

where a) € C between &, € W)

To prove 1 it suffices to show that the sum of W) contains W and is A-
invariant. It contains W because of the identity

L= bh(A-N" (7.1.10)

for some scalar by. It is A-invariant because A(A—X)"lw = w+(A—\)" w.
The equation (7.1.9) is impossible, because it implies

D ax(A=N)Tw=0, (7.1.11)

AEA

for any w € W, and, therefore, for any w € V.
Thus, we can choose a basis &, € W, of the phase space V = R". For
each element &, of the basis we have

and we put C¢, = —ny. Therefore, (A+BC)&, = Ay, and the set A coincides
with the spectrum of A + BC.

7.2 Remarks on the Cauchy formula

7.2.1 Remark 1

An easier way of proving the Cauchy formula is given below suggested by a
remark of Yura Taraban’ko.
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Cauchy formula: Suppose f is a polynomial, A is n x n matrix, 2 C C
is a simply-connected domain in complex numbers, I' = 02 is the boundary
of  oriented counter-clockwise. Suppose that {2 contains the spectrum of A
(the set of eigenvalues). Then

f(A) = L /F(s — A) 1 f(s)ds (7.2.1)

211

Proof. Suppose f(s) = Y. ,., fes®. One can replace I' with a large circle,

and rewrite
F oo [ =) (o)
r

21

in the form

2m/FZ SO ZA'“QM/ "“f(s)% (7.2.2)

k>0 k>0

The integral 5= [, s*'“f(s)% = f& by the residue calculus. Therefore,

:ZAkfk:

k>0

A
One can derive from the Cauchy formula the Jordan (spectral) decomposition
A in the following form

1= Z T

A=>" A,
where A runs over the spectrum of A, 7y (the spectral projectors) are such
that 7r/2\ =y, mam, = 0, if A # p, Amy = myA, and A, def myAmy. Moreover,
A is the only eigenvalue of Ay, and therefore (A, —M\)" = 0, if N is sufficiently
large. The projector 7y can be defined via

1
Ty = — (s — A)"ds,
2m1 (A

where I'(\) is a small contour around A.
Optional Exercise. Prove all the above statements about spectral decom-
position.
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7.2.2 Remark 2

One has to define A, as the operator A : V — V restricted to the invariant
space V) oo m\V. So, the new and old A, coincide in their common domain
Vi (but the old A, has a greater domain V'). The spectrum of old A, might
contain 0, besides of .

Thus, the correct statement of the spectral decomposition is this:

12271')\
A:ZW)\A)\W)\,

where A runs over the spectrum of A, my (the spectral projectors) are such
that 7T§\ = Tay TATy = 0, if A 75 u, Aﬂ')\ = 7T)\A, and A)\ : V)\ — V)\ is the
operator A : V — V restricted to the invariant space V) aof m\V. Moreover,
A is the only eigenvalue of A,.
You have already checked that the integral formula
1

T = — s — A)'ds 7.2.3
ol (7.23)

defines the spectral projectors m\ with required properties, so that, in par-

. def . . .
ticular, V), = m,V is an invariant subspace.
Therefore

1 1
Ay =mAT, = Ay = — (s — A) 'Ads = — (s — A) lsds,
211 S 211 S
(7.2.4)
where all operators are considered as defined on V) def m\V. The latter

identity holds because fr()\) ds = 0. Note also that the integral

1 1
— (s — A) tsds = — (s — Ay) lsds
211 INGY 2m1 r(\)
since A = A, on V). Now, we have to show that if p # A, then (Ay — p) is
invertible. We define the putative (A — u)~! by the integral formula

1 _, ds
S_%/m(s A7 (7.2.5)

and check that S(A, — ) =1 (of course, as operators on V).
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Indeed, by the standard trick with the resolvent identity

1 _ 1 (t —p)dt\ ds
S(Ay — p) = — — A — =1, (7.2.6
( A M) 27'('2 /F()\)(s )\) (27TZ /F’()\) t—s ) S— U ’ ( )

since the inner integral is s — pu, and because of the integral formula for
= 1onV,.
Perhaps, a better way is to extend the Cauchy formula from polynomials

to analytic functions in the neighborhood of A, including the function s
1
s—p”

7.3 Exercises
We are given a linear control system
&= Ar+ Bu, uecU. (7.3.1)

in the phase space V' = R". Characteristic polynomial of a matrix D is
defined by pp(s) = det(s — D).
Exercise 1. Give a detailed proof of the following lemma [6]:

Lemma 7.3.1 If the system (7.8.1) is controllable, then there exists a vector
be W = BU, and a feedback matriz C' such that the system

t=(A+BC)x+bv,veER (7.3.2)
with a scalar control, is controllable as well.

(Hint: Take an arbitrary 0 # b € W = BU and consider maximal d such that
dim[b, Ab,..., A% 1b] = d. If d = dimV, we are done. Otherwise, put Cb =
CAb=...=CA%2p =0, and CA? b = ', where ¥/ 4f By is not contained in
[b, Ab, ..., Adilb]. This is possible because of controllability, and if we substitute
A" = A+ BC for A, the value of d will increase.)

Exercise 2. Prove the identity det(1, — o) = det(1,, — f«a) for any pair
a, f of n x m,m x n matrices (Hint: Consider

L, B
det( o 1n>

and prove that it is equal to both det(1,, — a() and det(1,, — fa))
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Exercise 3. Prove that the matrix F(s, A) [det(s — A)](s — A)7! has
polynomials of s of degree less or equal to n — 1 as its matrix elements.
(Hint: use explicit formulas for these matrix elements.)

Exercise 4. Prove the Cauchy formula: Suppose f is a polynomial, Aisnxn
matrix,  C C is a domain in complex numbers, I' = 02 is the boundary
of  oriented counter-clockwise. Suppose that €2 contains the spectrum of A
(the set of eigenvalues). Then

1
A)=— — A) Hf(s)d 7.3.3
F(4) zm./re ) (s)ds (733)
Hint 1: Define f o o fr 5 — f(s)ds, and show that it does not

depend on I', and solve the followmg sequence of exercises:
Exercise 4a. Prove that, if f =1 then

(Hint: replace I" with a large circle)
Exercise 4b. Prove that, if f(s) = s then

F(A) =4 (7.3.5)

~

Exercise 4c. Prove that E(A) = f(A)g(A). (Hint: write

454 = ﬁ / / (5= A) (st — A) gt (730

and use the resolvent identity

1

(s= )7t = )T = ((s— )7 = (t = A)7)—

to rewrite (7.3.6) as the difference of

QL (s— A) 1f()< ! /Fﬂdf) ds (7.3.7)

m Jp 2 Jpt— s

. 1 L[
— - [ — [ s ) a 3.
o S = A) g()<2m' i S) (7.3.8)
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If T" is a very “large” contour compared to I', then the inner integral in
(7.3.7) is equal to g(s) while that in (7.3.8) is zero)

Hint 2: Show that (7.3.3) holds for diagonalizable matrices A, and get the
general case by passing to the limit.

Hint 3: Take a large circle for the contour . This is possible by Hint 1.
Then

(s—A)' = Z ArsT! (7.3.9)
n=0
on v. Then,
N - n 1 —n—
f(A) :;A Q_M/FS Lf(s)ds. (7.3.10)

Show that if f(s) = > ans™, then 5= [ s7" ! f(s)ds = a,.
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Chapter 8

Elements of Nonlinear
Controllability

8.1 Lie brackets

First, we indicate an interpretation of the Kalman controllability criterion
from the geometric point of view.

A general control system is given by a set of vector fields f, in the phase
space V = R"™:

i = fu(r) (8.1.1)

We assume that each field is infinitely smooth (w.r.t. z). The set of all
infinitely smooth vector fields is more than just a linear R-space (or even a
module over C* functions), it is a Lie algebra, and now we explain what this
means.

Note first, that a vector field f(x) can be regarded as a linear operator
— the operator of differentiation along the field. In other words, f defines
and is defined by the operator (f, 2) o > fia%. The operator (f, 2) can
be defined as follows:

(fiaulz) = —| (),

t=0
where u(z) is an arbitrary smooth function, and ¢;(x) is any smooth map
such that ¢g(z) = = and %‘t:o ¢, = f. In particular, if e/ (x) stands for
the integral curve of f through z, then (f, Z)u(e'/(z)) = Lu(e'/(z)). In
what follows we’ll often denote (f, 63—36) simply by f. Then, the latter equality
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may be rewritten as %etf = fe!/, where both parts are now interpreted as
operators acting upon smooth functions, the operator e/ being defined as
efu(x) = u(e ().

Upon interpreting vector fields as operators one can multiply them. Un-
fortunately, the vector fields are first order differential operators, and their
product is a second order operator, — not a vector field. However, the com-
mutator [a, D] ' 4b — ba of two first order differential operators is again a
first order differential operator, i.e., a vector field.

Exercise 8.1.1 Check this.

The commutator determines a structure of the Lie algebra on the vector
space of all smooth vector fields. This means that

1. Operation f,g+— [f,¢g] is bilinear.

2. [f, f] =0 for any f

3. The Jacobi identity holds: [[f, g], h] + [[g, k], f1 + [} f], 9] = 0
Exercise 8.1.2 Check the Jacobi identity.

Informally speaking, any Lie algebra is naturally identified with the tangent
space in the neutral element (unit) of a “Lie group”. In the case of smooth
vector fields this group is the group of diffeomorphisms (invertible smooth
maps). This is actually a corollary of the above formula %etf = fetf.

Any set F of vector fields f, generate a Lie algebra Lie(F) = Lie(f,), which
is a minimal Lie subalgebra (in all vector fields) containing all f,. As a vector
space it is generated by multiple commutators like [. .. [[fu,, fus)s - -+ fu,]- For
any x € V we denote by F(z) the vector space consisting of values g(z) in
x of all vector fields g € F. In particular, Lie(F)(x) consists of vectors g(z)
for all g € Lie(F).

Exercise 8.1.3 Check that [f,g] = <f,a%)g — (g,a%)f, where f,qg in the
right-hand side are interpreted as smooth vector-valued functions.

Exercise 8.1.4 Prove thal eee "e™9(z) = x + ¢*[f,g] + o(t?). Make
picture.
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Exercise 8.1.5 Find a connection between Poisson and Lie brackets. More
precisely, to a smooth Hamiltonian H(p,q) one associates the vector field

£y = (_%_ZI’ %_I;), Calculate [Em,, Em,)-

Kalman criterion
Now we turn to the vector fields in the Kalman setup:

&t =Ar+ Bu, uelU=R", (8.1.2)

One can easily check that [Az,a] = —Aa, where a is an arbitrary con-
stant vector field (vector). Therefore, the Lie algebra Lie(F) generated
by the Kalman fields f, = Ax + Bu can be described as follows: As a
vector space it is spanned by the linear field Ax and the constant fields
Bu, ABu, ..., A" ' Bu.

Exercise 8.1.6 Prove the above statement

We see that the Kalman controllability condition can be restated as follows:
For all z € V, Lie(F)(x) is maximal possible, i.e., coincides with the entire
tangent space at x. Here, F is the set of the Kalman vector fields f, =
Az + Bu.

Exercise 8.1.7 Prove the above statement (hint: put x =0)

Definition. Any family F with this property dim Lie(F)(x) = n is called
completely nonholonomic.

Therefore, the Kalman criterion can be stated as follows: The family F =
{fu = Az + Bu} is completely nonholonomic. In the next section we discuss
to what extent this restatement of the Kalman criterion is applicable to
nonlinear control systems.

8.2 Rashevsky — Chow theorem

It is convenient to use piecewise constant controls when talking about non-
linear controllability.

Let F be any set of smooth vector fields such that if f € F, then the
phase flow €'/ is defined for any ¢ (complete vector field). The set M (F) of
diffeomorhisms of the form

M(F) = {el/r .. eniny, (8.2.1)
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where ¢; > 0, and f; € F, is called the semigroup generated by F. These are
exactly the transformations generated by piecewise constant controls.
Similarly, the set G(F) of diffeomorhisms of the form

G(F) = {e"fr .. el t, € R, f; € F} (8.2.2)

is called the group generated by F.

Note, that the only difference between M (F) and G(F) is in the positivity
condition ¢; > 0 in the M-case, and G(F) = M(F|J—F).

Then, the attainable set A(z) from a point x is by definition

A(z) = A(F)(z) = {mx, m € M(F)},
while the orbit O(z) of a point z is by definition
O(z) = O(F)(x) = {9, g € G(F)}-
Now the main result of the section is as follows:

Theorem 8.2.1 (Rashevsky — Chow) Suppose that the family F is comple-
tely nonholonomic, i.e., dim Lie(F)(x) = n for any point x. Then the orbit
O(x) of any x € V coincides with the entire phase space. In other words, the
system F|J—F is completely controllable by piecewise constant controls.

Counterexample. Consider V = R? with F = {8%17“@1)8%9}7 where
a # 0 has a compact support. Then, O(F)(x) = V for any = € V, but the
system is not completely nonholonomic.

Exercise 8.2.2 Prove the above statement.

Theorem 8.2.3 (converse Rashevsky — Chow) Suppose that the family F
consists of analytic vector fields and the orbit O(z) of a point x € V' coincides
with the entire phase space. Then the system F is completely nonholonomic.

To prove the Rashevsky — Chow theorem we need some extra machinery.
First, define the action of a diffeomorphism F : V' — V upon vector field
f by the formula F,f(x) = (‘?9—5) f(F~'z). In other words, we take the
tangent vector f(F~'z) at the point F 'z and transport it to the point x
by the tangent map ?)_I; of the diffeomorphism F'. This action is denoted
also by Ad F. If one treats F' and f as operators on smooth functions, one
has AdF(f) = FfF~'. Another important operator ad f on vector fields
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is associated to any vector field f, and is defined via ad f(g) = [f, g]. The
above operations are related via 4 Ade'/(g) = Ade' ad f(g).

For any set P of diffeomorphisms and a family F of vector fields we define
a new family AdP(F) = {AdP(f), P € P, f € F}, and define a linear hull
[F] of any family F as the vector space generated by F. Then we have
the following simple statement, which is the core of the Rashevsky — Chow
theorem(s).

Proposition 8.2.4 Suppose, we are given a family F of smooth complete
vector fields. Put G = G(F) which is the group generated by F. Then,

Lie(F)(z) C [AdG(F))(x) (8.2.3)

for any point x. If the family F consists of analytic vector fields, the above
inclusion turns into equality

Lie(F)(z) = [Ad G(F)](x). (8.2.4)

Proof. Upon a brief reflection (give a detailed account!) the inclusion (8.2.3)
reduces to

ad f(g)(x) = [, 9)(z) € [Ade (9)](2), (8.2.5)
for any couple f, g of smooth vector fields. This is almost obvious, since
d
ad f(g)(z) = —|  Ad e/ (9)(x) € [Ad e (g)](x), (8.2.6)
=0

because the curve ¢ — Ad e/ (g) is contained in {Ade'/(g)}, and its tangent
vector 4 Ade'/(g) is contained in the linear hull [Ade'/(g)]. Similarly, to
obtain (8.2.4) we notice that the curve t+ — Ade'(g)(z) is analytic if f, g
are analytic vector fields, and, therefore, its linear span coincides with that
of the coefficients of its Taylor series at ¢ = 0. These coefficients coincide
up to a scalar multiple with vectors of the form (ad f)"g(x) which belong to
Lée(f: g)(l’) A

Now we can prove the (direct) Rashevsky — Chow theorem. Under its
assumptions we have, by virtue of Proposition 8.2.4, that for any x € V
dim[Ad G(F)](x) = n. In other words, one can chose n vector fields g; of
the form g; = AdG,(f;), where G; € G(F) and f; € F, such that g;(z)
are linearly independent. It is clear (explain!) that e = AdG,(eti) €
G(F). Therefore, the map G : R®* — O(x) C V, given by G(ty,...,t,) =



78 CHAPTER 8. ELEMENTS OF NONLINEAR CONTROLLABILITY

el eln9n (1), has maximal possible rank n at 0 € R". Now the implicit
function theorem shows that O(x) contains an entire neighborhood of z.
This implies (prove it!) that O(z) is an open subset of the phase space V.
Since V' = |J,¢y O(z) we get a decomposition of the connected space V' into
disjoint union (give detailed explanation!) of open sets. Therefore, O(z) =V
for any x € V and the direct Rashevsky — Chow theorem is proved.

We will not touch the proof of the converse Rashevsky — Chow theorem,
for a natural approach to it requires more prerequisites from the (elementary)
geometry of manifolds. So, we leave the proof to the keen reader.

8.3 Hormander theorem

This purely illustrative section is aimed at convincing the reader that non-
holonomic families of vector fields are important well beyond the control
theory. We present here a deep theorem of L. Hormander about hypoelliptic
differential operators of second order.

Definition. Let P be a linear differential operator with smooth (C*°(V))
coefficients in V"= R". P issaid to be hypoelliptic if every local solution (i.e.,
solution in an open subset) u of the equation Pu = f is smooth, provided
that f is smooth.

It is classically well-known that, say, the Laplace operator ., 8‘9;2 resp.
the heat operator 2 + Y7, % is hypoelliptic in R™ resp. R""!. A.N.

Kolmogorov have shown in 30-th that the operator 3‘9—;2 + xa% is hypoelliptic
in R?.

Theorem 8.3.1 (Hormander) Suppose we are given a finite completely non-
holonomic family Xo, X1, ..., X; of smooth vector fields. Then the operator
P =X+ Y.\ X? is hypoelliptic.

Exercise 8.3.2 Show that the Hormander theorem implies hypoellipticity of
the above three operators: Laplace, heat, Kolmogorov’s.



Chapter 9
Black box

Suppose we are given a time-invariant observable linear control system

r = Axr+ Bu, ueU=R"™,

y = Cu (9.1.1)

where the phase space is V' = R", and the space of observable vectors W =
RP. If we assume the “initial condition” z(0) = 0 there arises the input-
output map S given by

t
y(t) = (Su)(t) = / Cel=94 By(5)ds (9.1.2)
0
We will refer to (9.1.1) as system (A, B,C, V).

Now the main problem is: Is it possible to recover the entire system
(9.1.1) if the input-output map S is known? (see [5])

Obvious answer is no, because of two reasons: 1) if the system (9.1.1) is
not controllable, then one can replace the phase space V' with a smaller space
(subspace) which is A-invariant, and contains BU, and this replacement does
not affect the input-output map, 2) similarly, if the system (9.1.1) is not
observable, then one can replace V' with a smaller factorspace V/P w.r.t. the
subspace P of undetectable elements (i.e., x € V such that t — Cet'z = 0),
and this again does not affect the input-output map.

Actually, if we are interested only in the input-output map, there is no
need to consider (9.1.1) in case it is not both controllable and observable.
Indeed, one can form canonically from (9.1.1) another controllable and ob-
servable system with the same input-output map. To do so, one just has to,
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first, replace V with the attainable set from the origin, and, second, factor
it out by the space of undetectable elements.

Now we can refine our initial question: Suppose that the system (9.1.1) is
controllable and observable. Is it possible then to recover the system (9.1.1)
from the input-output map?

In other words, we consider the controllable and observable system (9.1.1)
as a content of a “black box” with known input-output.

It is natural to consider two systems (A’, B',C’, V') and (A", B",C", V")
equivalent if there exists a linear isomorphism D : V" — V' such that

A'=DA"D™', B =DB", C"=C'D. (9.1.3)
Theorem 9.1.3 Two controllable and observable systems
(A", B',C". V') and (A", B",C", V")
with the same input-output map (9.1.2) are equivalent.

Proof. Suppose, the system (A, B,C, V) is controllable and observable. We
will build from the input-output map (9.1.2) a system (;L B,C, ‘N/) with the
same input-output map, and will show that it is equivalent to the initial
system.

First, the map (9.1.2) is a convolution with the kernel

As ;
K(s):{ce B, ifs>0 (9.1.4)

0, otherwise

Thus, the knowledge of S is the same thing as the knowledge of the matrix
function

F(s) = Ce™B. (9.1.5)

We define the canonical phase space V as follows: for each U-valued polyno-
mial f(s) =" fxs®, fr € U we consider the function

J(s) = Z <%> F(s)fr = ZCAkeASBfk (9.1.6)

The space V consists of these functions f We define the map B:U—=V
as Bu(s) = F(s)u, and the map C : V — W as Cf = f(0). The map
A:V = Vis defined as —s. We have to check that the system (;1, é, 5, ‘N/)
is equivalent to (9.1.1).
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We define the equivalence map D : V' — V as follows: it maps a vector r €
V to the function f(s) = Ce*z. The definition is correct, because, by virtue
of controllability, z can be represented in the form " A*Bf, (why?), and,
therefore, f(s) =" (%)k}"(s)fk belongs to V. These arguments show also
that the map D is onto, while the kernel of D is zero because of observability.
Thus, D is an isomorphism, and a direct verification confirms that it is

an equivalence. Indeed,
A 0 As As
ADz(s) = %Ce x = Ce™Axr = DAx(s),

BDu(s) = Ce*Bu = DBul(s),

and N
CDz = Ce™x|—g = Cx

A

Exercise 9.1.4 State and prove a similar theorem on uniqueness of a linear
system (A, B,C, V) with a given transfer function G : A\ — C(A— A)"'B.

Hint: One can reduce the question to Theorem 9.1.3 by considering the
Fourier-Laplace transform of the transfer function. Indeed, the function

e | ifs>0
O(s) = { 0  ifs<0 (9.1.7)
is a solution of
0
— — AP =) 9.1.8
(5. -4)e=s (0.1

so that the Fourier-Laplace transform @ solves (A — A)®(A) = 1, and, there-
fore, G is the Fourier-Laplace transform of the function (9.1.4). Another way
of reasoning is this:

Theorem 9.1.5 Two controllable and observable systems
(AI,BI,CI,VI) and (A”, B”7C”, VII)

with the same transfer function G : A — C(A — A)"'B are equivalent.
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Proof follows closely that of Theorem 9.1.3. The problem is to build from
the transfer function G(\) = C(A — A)~'B a system (A, B,C, V) which is
equivalent to (A, B,C, V).

First, we note that

CHAB = —— [ G(s)f(s)ds (9.1.9)

2wt Jr

for any polynomial f, where I' is any sufficiently large circle and denote the
matrix in the right-hand side of (9.1.9) by f. This follows immediately from
the Cauchy formula of lecture 6.

Define a vector space V as follows: It consists of U-valued functions of
the form s — > fr(s)uy, where the sum is finite, f is a (scalar) polynomial,
and u; € U.

We notice that V is a module over the polynomials R[s], meaning that if

v(s) is a polynomial, and f = 3" fi(s)ux € V the product

Uf Z ukGV

is well defined. In particular, operator A is defined correctly by

Aka Uk—Ska S)uk = Zsfk(s)uk

We can also define naturally an operator B U— V by B( ) = u.
Another important operator C:V — W is defined via

C (Z fk(S)Uk) = kaum

where the notation f; is defined after formula (9.1.9). Then define the sub-
space I C V as follows: a vector f = ¥ fu(s)ur, € V is contained in I

iff .
> (i) =

=~k
for any polynomial v. In other words, f € I'iff CA f =0forany £ =0,1,...

It is clear, by the way, that I C V is a submodule of V which means that if
f €1, then vf €I for any (scalar) polynomial v.
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Now we put V= ‘7/1, and similarly factor the operators g, E, and C.
It remains to define the equivalence D : V' — V by

D (3 fils)u) = fulA) Bu.

Here, S fu(s)uy, is a representative in V of an element of V = V/I. The
definition is correct, since if f =" fu(s)uy, € I, then CA*Df = 0 for any £k,
and, therefore, by virtue of observability, Df = 0.

Another natural question is: How to characterize the possible input-output
maps associated with linear systems via (9.1.2)? In other words, what char-
acterizes the matrix functions of the form Ce**B?

Exercise 9.1.6 A matriz function F(s) : U — W has the form Ce**B iff

the vector space generated by (%)k}—(s), k > 0 is finite dimensional. This
is also equivalent to the statement that F(s) = 3 amxs™e™ is a quasipoly-
nomial.

Hint: Follow the construction in the proof of the previous theorem.

Exercise 9.1.7 State and prove a similar theorem on characterization of the

transfer function C(A — A)"'B of a linear system (A, B,C,V).

Hint: G(\) = C'(A — A)™'B is a rational function of A such that G(\) — 0
as A — oo. Here, rational means that every matrix element is rational. To
establish the converse follow the proof of Theorem 9.1.5.
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Chapter 10

Examples

10.1 A cart under bounded force

We will discuss two simple examples of linear control systems with bounded
control with emphasis on explicit presentation of the corresponding attain-
able sets.
The first system is
F=wu, ul <1, (10.1.1)

which is a particular case of
2™ =, |u| < 1. (10.1.2)

We can immediately write down the support function Hpr)(§) of the attain-
able set D(T') (from the origin) at time T. We rewrite (10.1.2) in the form of
the 1st order system by using coordinates z; = 2~ for i = 1,...,n. Then,
the general formula Hpr(§) = fOT |B*eA™ €| dt takes the form

n tn—i
Z S (n—)!

1=1

T
dt (10.1.3)
0

Hpry(§) :/

The remarkable fact about this support function and, therefore, about the
corresponding attainable set is that the function and set do not depend on
time 7" essentially, meaning that everything is constant in coordinates X; =
z;/T" 1. In other words, if the matrix A = A(T) is given by (Az); =
x; /T then A(T)D(T) does not depend on time. Similarly, the function
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Hpr(A(T)*¢) does not depend on time. We write A(T)* instead of A(T)
“for functoriality”, although A(T)* = A(T). So it suffices to study D = D(1)

The set D has interesting singularities of its boundary. The gradient map
(&) = %_1; from the unit sphere |[£| = 1 to the boundary 9D of D is given by

2(E) = /0 sign (Z@- (nt"_;)!> (ntn_k)!dt, (10.1.4)

=1

and the multiple points of this map corresponds to singularities of the boun-
dary. One can identify the entire phase space with polynomials

n—1
T = g A
0

of degree < (n — 1). Then multiple points corresponds to polynomials that
have less than (n — 1) odd zeroes in the interval [0, 1]. These are exactly the
singular points of the boundary. The regular points corresponds to polyno-
mials such that all their roots are simple and are contained in [0, 1].

Exercise 10.1.1 Prove the above statements for n = 2. Make a picture of
the attainable set.

Theorem 10.1.2 Suppose, we are given a linear control system
& = Az + Bu,u € U, (10.1.5)

where U is a strictly convex compact, and suppose that x € 0D(T) is a point
of the boundary of the attainable set (from zero), corresponding to time T.
Then, the control u(t), t € [0,T], which brings zero to x, is defined uniquely.

Proof of this important result is left to the reader as an exercise.

10.2 Harmonic Oscillator
Here, we consider the system

F+r=u,ul <1 (10.2.1)
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By the same method as above we get the explicit expression of the support
function Hp(py(§) of the attainable set D(T) (from the origin) at time 7T

Hp)(§) = fOT |£ cost + & sint| dt

(10.2.2)
= T(E+E)V2 [ |cosT (t — 2)] dt,

where ¢ = arctan (%)

Exercise 10.2.1 Prove that HD(TT)(O tends to 2|¢| = 2(24€3)"? as T — oo
uniformly w.r.t. £, |€| = 1. Give a geometric interpretation of the result.

Exercise 10.2.2 Prove that if T is small, then the gradient map x(§) =
M%(T) has multiple points, and that OD(T) has corner points.

Exercise 10.2.3 Prove that if T is large, then the gradient map x(§) =

8H£(T) has no multiple points, and that OD(T) is smooth. How large the T

should be?

General results on singularities of attainable sets and their asymptotic beha-
vior see in references.
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Chapter 11

White Noise 1

11.1 Reminder on the Probability Theory

Mathematical probability theory takes the following standpoint on stochastic
events: they are, in fact, deterministic, but depend on hidden (unknown)
parameters. Thus, a random variable £ is a function {(w), w € Q, where
w is a hidden parameter (elementary event) contained in the set Q of all
these parameters (space of elementary events). We are interested in some
events which are collections of elementary events, and what we usually want
to know is the probability of an event. The mathematical model of an event
is a subset A C €, and the probability is a function P : A — P(A) € [0, 1].
Precise definitions are as follows:

Definition 11.1.1 The probability space is a triple (Q, F, P), where Q) is a
set named the space of elementary events (or simply probability space), F
is a collection of subsets A C Q (events), P is a function P : F — [0,1]
(probability). These data are such that

1. F is a o-algebra, meaning that if A,B € F, then A(\B € F, A\B €
F,and|J,Ai e Fif A, e F fori=1,2,...

2. Qe F

8. P(U;jer Ai) = 22, P(A) if Ai(NA; = for i # j, I being any denumer-
able set of indices

J. P(Q) =1
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If we omit, P from the above definition, we get the definition of the measurable
space. A map f : Q — Q from one measurable space (£, F) to another
(¥, F") is called measurable (denoted by f € F) iff f~'(A) € F for any
A e F'. A random element of a measurable space (@', F') is by definition a
measurable map f from a probability space (Q,F, P) to (2, F"). It induce
a probability measure f.P on (', F'): f.P(A) = P(f~*(A)), which makes
(Q, F', f.P) a probability space. The measure f,P is called the distribution
of f, and is often denoted by P.

Any set @ of subsets A C 2 belongs to the minimal o-algebra containing
it. This o-algebra is denoted by o(®) and called generated by ®. Similarly,
any set ' = {f : (,F) = (,F")} of random elements determines the
o-algebra o(F) = o({f'(A), A € F'}), which is also called the o-algebra
generated by F'.

Example 11.1.2 The most (at least historically) important probability space
s ([0,1], B,dx), where Q = [0,1], B consists of the Borel sets (c-algebra
generated by open sets), and dx is the Lebesque measure (length).

Example 11.1.3 Next example is the unit square ([0,1]%, B, dzdy) , where
B is again the Borel o-algebra, dxdy is the Lebesgue measure (area).

Example 11.1.4 The standard model of coin tossing is (Q,F, P), where
Q = {e,¢, € {0,1}, 0 = £1,£2,...}, F is generated by the sets of the
form {ex = 1}, and P is such that P({ex, = ay,i € I}) = 271, Thus, an
elementary event is an infinite sequence (from —oo to +00) of tossing, the
result being either 0 (head) or 1 (tail) with equal probability.

Two probability spaces (£, F', P') and (Q", F", P") are isomorphic if there
are sets Q e F, Q" e F", and a bijective measurable map f : Q' —
Q" such that P(Q) =1, P(Q") =1, f7'(4) e Fif Ae F' A cC Q'
and P'(f71(A)) = P"(A)). Two events A,B € F are called equivalent
if P((A\B)(B\A)) = 0, and, similarly, two random elements are called
equivalent if they differ on a set of the zero measure. Equivalent elements
are indistinguishable from the experimental viewpoint and we will not usually
distinguish between elements and their classes of equivalence.

Exercise 11.1.5 Show that all the above examples are isomorphic.
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11.1.1 Measure and integral

A real random variable £ is a random element £ : Q@ — R of (R, B), where

R is the real line, and B is the o-algebra of the Borel sets. The probability

distribution P of ¢ is simultaneously a (Schwartz) distribution on R.
Mathematical expectation E£ of £ is by definition

B [ c@)ap) = [ aara)

if £ is an absolutely integrable function. Here, we will not describe the
detail of construction of integral from measure. In rough outline we define
Jola(w)dP(w) = P(A), where 1, is the indicator function of A € F, then
extend it to finite linear combinations of the indicator functions, and pass to
a limit.

11.1.2 Independence and conditional expectation

Two events A, B € F are said to be independent if P(AB) = P(A)P(B). Let
F' C F be a sub-c-algebra. An event A € F is said to be to be independent
of F'if A, B are independent for any B € F'.

Example 11.1.6 Consider (0, F, P), where Q = [0,1]?, F consists of the
Borel sets (o-algebra generated by open sets), and P is the Lebesgue measure
(area). Put F' equal to the o-algebra of sets of the form A x [0,1], where A
is a Borel subset of [0,1]. Then a set B € F of the form [0,1] x B, B’ being
a Borel subset of [0, 1], is independent of F'.

By a slight abuse of the language we say that a random element
f:(Q,F) = Q" F"

is independent of F' iff all the events from the o-algebra o(f) generated by
fHA),A € F" are independent of F'. Two o-algebras F', F" are called
independent provided that all events A € F', B € F" are independent. Two
random variables &, 7 are called independent iff the o-algebras o (), o(n) are
independent. This condition is equivalent to Ef(£)g(n) = Ef(£)Eg(n) for
any couple of real measurable functions f, g.

Exercise 11.1.7 Show that in the above example a random variable f =
f(z,y) is independent of F' iff the distribution of the random variable f, :
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y— f(x,y) does not depend on x almost surely (meaning that this is the case
after removal of a set of measure zero from [0, 1]).

Suppose we are given an integrable random variable £, E(|{]) < oo, and
a o-algebra F' C F. Then, there exists a unique (up to equivalence) F'-
measurable random variable E(£|F’) such that

E(E(¢|F)n) = E(¢n) (11.1.1)

for any (bounded) F'-measurable random variable 7. The variable E(£|F")
is called the conditional expectation of & w.r.t. F'.

Exercise 11.1.8 Prove the uniqueness of E(&|F'), and show that its exis-
tence is implied by the following version of the Radom — Nicodim theorem.:
Suppose, that P’ is a probability measure on a probability space (2, F, P),
and it is such that P'(A) = 0 if P(4) =0 for any A € F. Then, P’ has the
form

P = [ fwire),
A
where f is a positive integrable random variable.

In the Radom — Nicodim setup the measure P’ is called absolutely continuous
w.r.t. P, and the function f is called the density of P' w.r.t. P.

Exercise 11.1.9 Suppose that the above £ is square integrable: E(|£]?) < oo.
Show that & = E(&|F') is the best F'-measurable approzimation to £ in the
Lo-sense: E(|€ — &'|?) is minimal possible.

Interpretation of the statement 11.1.9 is as follows: The g-algebra F’ contains
all available information. Say, F' = o(¢), where ¢ is a random variable that
we can measure. Then E(£|F") is the best possible prediction of the value of
¢ that we can make on the basis of available data ¢.

Q=0 xQ" F=0o(F,F"), and dP(w', ") = f(w',")dP' (")dP" (w"),
then E(&|F"), where £ = £(w',w"), is given by

E@fﬂwwzl@%gﬁgﬁ%ﬁzgju>

(11.1.2)

(Prove it!)

Exercise 11.1.10 If a random wvariable & is independent of a o-subalgebra
F' C F, then E(&|F')(w) = E(§) for (almost) all w.

Exercise 11.1.11 Extend the above results on conditional expectations of a
real random variable to vector-valued variables.
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11.1.3 Characteristic functions and Gaussian vectors

The characteristic function of a real random variable £ is a complex-valued
function x¢ of the (deterministic!) real variable:

xe(t) < Bexp(ite) = [ explitt(w))dP(w) = [ explite) dPi(a)
Q R
which is the Fourier transform of the (Schwartz) distribution Pe. It de-
termines the distribution P uniquely. The characteristic function of the
sum of two independent random variables is the product of corresponding
characteristic functions (prove it!).

The definition of the characteristic function has a natural extension to the
case of random vectors. If £ € V' is a random vector, then its characteristic
function x¢ is a function on the dual space V* defined by

xwﬁme@m=LMW@MMw»

One can characterize independence by using the characteristic functions:

Exercise 11.1.12 Suppose that ¢ € V, n € W are random wvectors and
¢ = (&n) € VoW is the compound vector. Then the vectors &,n are
independent iff the characteristic function factorizes: x(z) = xe(x)xy(y) for
z=(r,y) e Ve W*

A distribution p(z), * € R is called Gaussian if it has the form p(z) =
exp(Az®+ Bx + (), where A, B,C € C, or is a limit of such functions in the
space of distributions. For instance, the Dirac J-function is Gaussian (prove
it!). One can characterize the Gaussian functions as solutions of nontrivial
equations of the form

0
(04% + Bx +v)p(x) =0,

where a, 3,7 are (complex) constants (do this!).
A random variable is called Gaussian if its distribution is Gaussian.

Exercise 11.1.13 Show that a random variable is Gaussian iff its charac-
teristic function is Gaussian.

The ubiquity of Gaussian variables is (partially) explained by the Central
Limit Theorem:
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Theorem 11.1.14 Suppose that &, is a sequence of independent identically
distributed (real) random variables such that BE? is finite. Put m = E&,,
o =E(&, —m)?. Then, the distribution of the variable

def Ziv(gn _m)
Sy = —\/N

is approzimately Gaussian: P(Sy € A) — \/LQ?IA e~ 25" dx as N — oo for
any interval A C R.

Proof (sketch). It suffices to show that the characteristic function xg, (A) —
e 2 as N — oo. But ys,(A) = Xg(\/%)N, where ¢ = &, — m (the
distribution of ¢ does not depend on n). By the Taylor formula,

1
Xg/()\) =1- 50')\2 + 0(/\2),

and therefore, limy_, o, N log Xg,(\/iﬁ) = —%a)\g which is what we need. A

Similarly to the scalar case we say that a distribution p(z), z € R" is
Gaussian if it has the form p(z) = exp({(Az,z) + (B,z) + C), where A is a
complex matrix, B is a complex vector, or is a limit of such functions in the
space of distributions.

A vector-valued (with values in some V' = R") random variable ¢ is called
Gaussian if the real variable (), ) is Gaussian, where A € V* is any linear
functional on V. An equivalent definition is that distribution of ¢ is Gaussian,

or that the characteristic function of £ is Gaussian.

Exercise 11.1.15 (not obvious) Find a characterization of the vector Ga-
usstan distributions via differential equations.

Solution: Suppose V' = R". Consider differential operators M (£, n, A), where
&,n e C™ and )\ € C of the form

M(&n,\) = <§7 (%> + (n,x) + A\ (11.1.3)

Take an n-dimensional subspace £ in the 2n 4+ 1-dimensional space b of
operators M (&, n, A) such that a) any pair of operators from £ commute, b)
nonzero constants do not belong to £. Then, any distributional solution u
of the system Mu = 0, where M runs over £ is a Gaussian function. The
converse is also true.

An intimately related fact is this:
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Exercise 11.1.16 Suppose, that f is a distribution in V = R", and L C b
consists of operators M € §y such that M f = 0. Then

e dimc L <n
o Any pair of operators from L commute

e Nonzero constants do not belong to L

Exercise 11.1.17 Suppose that £ € V is a V -valued Gaussian vector. Then,
there exists a vector subspace W C V', a strictly positive definite quadratic
form @ on the dual space W*, and a vector a € V such that n = & —
a € W, and the distribution of n as a W-valued Gaussian vector has the
(nondegenerate Gaussian) density dP,(x) = det(2rQ) Y2 2@ r) gy

Explanation of notations: If a nondegenerate quadratic form @) is given on
W* it naturally defines a quadratic form on its dual W. Indeed, a nondegen-
erate quadratic form identifies W* and W. If W* is identified with R", then
the quadratic form (@ is identified with a symmetric matrix to be denoted
by the same letter. Then the matrix of the quadratic form on the dual W is
given by the matrix Q.

Thus, a Gaussian vector £ canonically determines a vector ag in the space
of possible values, and a Hilbert space structure on a subspace W, € V.

Vectors & € V; are called jointly Gaussian if the compound vector

(£1,&,...) eVix Vax ...

is Gaussian. If & are jointly Gaussian, then any finite linear combination
>, ai&, where a; € R is Gaussian (prove it!). The converse is also true (prove
it!). If vectors &, &, i = 1,2,... are jointly Gaussian, then the conditional
expectation X = E(£|o(&, &, ...)) is Gaussian (prove it!). Basic fact is this:

Theorem 11.1.18 Suppose, that £,1 are centered (i.e., E€ = 0, En = 0)
jointly Gaussian vectors. Then they are independent iff they are not cor-
related, meaning that E(({, \){n, n)) = 0, for any pair of linear functionals

A, b

Proof. It suffices to show that (£, \) and (n, 1) are independent which reduces
our task to the case of scalar centered Gaussian &, n such that E{n = 0. The
characteristic function of the Gaussian vector ¢ = (£,17) € R* has the form



96 CHAPTER 11. WHITE NOISE 1

Xc(2) = exp(—(Qz, 2) +i(q, 2)) where @ is a symmetric 2 X 2 matrix, and ¢
is a 2-vector. Since &, 7 are centered, we infer that ¢ = 0, and from E&np =0
we infer that Q12 = Qa1 = E&n = 0. Therefore, xc(z) = xe(z)xy(y) for
z = (z,y) which is equivalent to independence of £ and 7.

Exercise 11.1.19 Put X = X — EX and define similarly E and 57 Prove
that any component of the vector X is a linear combination of components
of the vectors &;.

Proof. Assume for simplicity that E£ = 0 = E&; and drop the hat in what
follows. We can also assume without loss of generality that £ and &; are scalar
Gaussian variables. Then we will seek X in the form X = > a;&;, where
a; € R and such that EEE; = Zf\il o, E&E; for any j. Indeed, then, in view
the Theorem 11.1.18, the Gaussian variable £ - a;¢; is independent of all &;.
Geometrically, we just have to take the orthogonal projection of the vector
& € Ly(Q2, P) to the subspace generated by & € Ly(€2, P) thus obtaining X.
This in fact completes the proof, but we present arguments of a non-geometric
nature. In the matrix language, we are to solve the equation Qa = b, where
Qi; = E&& and b; = EEE;. The criterion of solvability is this: if Q¢ = 0, then
(¢, b) = 0. But one can see easily that Qc = 0 means that E; (> ¢;&;) = 0 for
any i. In particular, this implies E(}" ¢;&;)? = 0, and, therefore, Y ¢;&; = 0.
From this we immediately get that > ¢;b; = E(>_ ¢;&;)§ = 0.

Therefore, in general, forming the conditional expectation of £ is an affine
operation.
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12.1 Stochastic processes

There is no a consensual view of what a stochastic process is. There is,
however, a common element in all definitions: the set of time instants 1" and
the space of values (91, ).

We list some reasonable definitions:

1. A stochastic process is a set of random elements & € 9, where t € T

2. A stochastic process is a random element (sample path) in the space
IM? of maps T — M.

The first definition is quite clear, the second is not, but the relation of the

definitions is clear: if £ is a random element of M’ then & o £(t) is well-
defined. The second definition is not clear for two reasons: first, we have to
specify a measurable structure on 97 such that the map & — £(t) from IMNT
to 9 is measurable for any given ¢t € T', second, it is not always reasonable
to consider all (sample) pathes T'— 90t. It might be better to deal with, say,
measurable maps, or continuous maps, or analytic maps, or, on the contrary,
some rather singular generalized functions. For example, if we want by some
reason compute mathematical expectation of e™°, where S = fOT(%th—%xQ)dt
is the action for a harmonic oscillator. This makes no apparent sense if the
path ¢ — x(¢) is not differentiable.
Another reasonable definition is this:

3. A stochastic process is a a probability measure P in the space M’ of
maps T — .

97



98 CHAPTER 12. WHITE NOISE II

Again, this requires clarification, but the relation with the previous definition
is as follows: P(A) = Prob(¢ € A), where Prob is the probability measure
involved into definition of the random element & € 9M7T, A is a measurable
subset of 9MMT. In other words, P = Prob; = &, Prob.

We have however an indisputable example of a random process — the
coin tossing:

Example 12.1.1 T ={1,2,...}, M ={0,1}, Q = M7, &(w) = w(t). Here,
T 1s the set of discrete time instants, point of M is the result of a tossing
at specific time instant, §2 is the set of all sequences T — IM of all possible
results of tossing. Independent random variables & € {0,1} t € T are the
results of tossing at time t. The o-algebra F, and measure P are defined in
lecture 10. These data defines a stochastic process in all the above senses.

In fact the above vague notion of stochastic process is not always adequate:
one needs to consider generalized processes. Basically, these are the processes
such that their sample pathes are generalized functions (distributions). We
will consider only one-dimensional time: the set 7' will be an interval in
the real axis. The set of values 9 of a generalized process will be a finite
dimensional (real) vector space: a proper definition of a generalized map to
a nonlinear manifold is a great challenge. We denote by 91 the dual space
of M.
Again we list some reasonable definitions:

1. A generalized stochastic process £ is a continuous linear map ¢ — (¢, &)
from the set of (deterministic) 9t*-valued test functions to real random

variables. Symbolically, (¢,&) = [(#(t),£(t))dt.

2. A generalized stochastic process is a random element (sample path) in
the space of generalized maps 7" — 9.

3. A generalized stochastic process is a a probability measure P in the
space of generalized maps T — 9.

Now, all the above definitions require clarification in order to become mathe-
matical ones. For instance, in the first definition one needs to choose a
space of test functions, and define exactly what the adverb continuous means.
In the second definition the space of generalized maps T" — 901 is to be
defined along with a measurable structure, and the same applies to the third
definition. Still, there are some clear relations between the above definitions.
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Say, a a random element £ in the space of generalized maps T" — 9t can be
integrated against a test function ¢ in order to get a random variable (¢, £),
and an ordinary stochastic process defines a generalized one via (¢,§) =
J{o(t),£(t))dt.

In what follows we will deal a lot with Gaussian processes, which again
have no a consensual definition, but instead a set of interrelated ones like the
following:

1. A Gaussian process is a set of random jointly Gaussian vectors & € 9N,
where t € T.

2. A Gaussian process is a Gaussian vector in the vector space 9T of
maps 1T — 9.

3. A Gaussian process is a Gaussian measure P in the vector space 97
of maps T — IN.

4. A generalized Gaussian process & is a continuous linear map ¢ — (¢, &)
from the set of (deterministic) 9Mt*-valued test functions to real Gaus-
sian variables.

5. A generalized Gaussian process is a Gaussian vector in the vector space
of generalized maps T — 9.

6. A generalized stochastic process is a Gaussian measure P in the vector
space of generalized maps 7" — 9.

We will not clarify the above general definitions. Instead, we’ll construct
explicitly an interesting generalized Gaussian process — the white noise,
which is one of the basic objects both in physics and mathematics.

12.2 Construction of the white noise

We will eventually build a generalized Gaussian process with independent
values, defined at any time ¢ € R, but we start with a periodic process in
the interval [0, 27]. We commence with a sequence of independent centered
(Egr, = 0) Gaussian complex variables gx, where k € N is a positive integer,
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E ((Regy)(Imgy)) = 0, E(Reg)? = 5 = E(Img,)?, and put g_x = G, if
k € N. Then we define

§(t) = % > ge™ (12.2.1)

keZ

and will try to make sense of the definition.
Of course, the sum does not converge. However, we can take a smooth
real periodic function ¢(¢) and try to make sense of the formal integral

/0 ' SOEH) At = V2 Y g, (12.2.2)

where ¢ is the kth Fourier coefficient of ¢. One can see easily that the sum
converge in Ly(92). Indeed, if A C Z is any subset such that A = —A, then

> gkbok

keA

2
= Elgo_il> =D 1ol (12.2.3)

keA keA

E

because of independence of gy for & € N. In particular, if ¢ € Lo([0, 27]),
then the sum (12.2.2) converge in Ly(£2, P), and it also follows from (12.2.3)

that
E </027T gb(t)§(t)dt)2 = /O% B(t)*dt (12.2.4)

Note, that the Gaussian properties of coefficients g, played no role up to
now. However, since the partial sums in (12.2.2) are obviously Gaussian,
the formal integral (12.2.2) is Gaussian. Thus, we constructed a generalized
Gaussian process in the interval [0,27] according to the Definition 4 of a
Gaussian process.

However, we do not know by now whether the formal sum (12.2.1) is
a distribution, because this requires estimating the formal integral (12.2.2)
pointwise as a function of w € €, not in Ly(€2) as we did. For example,
although the integral (12.2.2) is a well-defined random variable for any ¢ €
Ly([0, 27]), it is not true that £(t) belongs to Lo([0, 27]) with probability 1.
In fact, this probability is 0 (prove it! Hint: this is equivalent to the fact,

that
Z |gx|* = o0
k
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with probability 1. Use the law of large numbers.). We will show now that
in fact, £(¢) is the derivative of a continuous function w(t). In other words,

we will show that
Yo T (12.2.5)
1k
0£kEZ

is the Fourier expansion of a continuous function with probability 1.
Define first

n—1

-Tmn(t) o ;q;;? zkt

k=m

and Sy, = SUPseio 20) [Tmn (t)]. In what follows we will take indices m,n of
the form m = 2% n = 2¥*1 k € N, and put Sy = Spn, Xi = Tmn. Our basic
estimate to be proved is

E|S,|* < C27%/2, (12.2.6)

where C' is an absolute constant. It implies immediately that the series

Z X(t) which is formally equal to Z g—zeikt
i

leN keEN

converges absolutely and uniformly in [0, 27| with probability 1 (provide de-
tail!). Thus, the series defines a continuous function, and (12.2.5) is the
Fourier expansion of a continuous function with probability 1.

To prove (12.2.6) we write down

n—1 n—m—1 n—I—1
|9x|* it 9595+
* = 2=+ 2Re ' SRR 12.2.7
et = 3 2 o S B 22
=m = j=m
which implies
n—1 ’ n—m-—1|n—I-1 g g
2 < J AL 12.2.8
mal? < ; sl 229
We estimate the mathematical expectation of the inner sum f,;, = Z;’;é %?—fl;
as follows:
i 1 b—a
< (12.2.9)

2 2 _
(E‘fab‘) S E’fab’ — ;]2(]—|—1)2 = a4
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because of independence of g; (provide detail!). Therefore,

n—1 1 n—m—1 n—1 1/2
Elsmal? < & t2 > < — ) : (12.2.10)
k=m

=1

and therefore,
E|5mom|* < 3m™/2, (12.2.11)

which implies (12.2.6) when m = 2*. This completes the construction of the
white noise in the interval [0, 27]. What we have built is a Gaussian process
according to all the above definitions (give detail!) and got a lot of extra
information.

However, we need the white noise not in 7' = [0, 27| but in T'= R. This
is easy to reach: For each n € Z take an independent copy &,(t), t € [0, 27 of
the white noise just constructed, and then put £(t) = &,(t — [2£] 27) (explain
the last formula at the level of distributions!).

Now we list some basic properties of the white noise &:

1. ¢ is a generalized real-valued centered Gaussian process in T = R
according to all the above definitions.

2. £(t) is the derivative of a continuous (ordinary) Gaussian process w(t),
t > 0,w(0) = 0. This latter process is called the Wiener process, or
the Brownian motion.

3. £(t) the process with independent values, meaning that the random
variables (¢, &) and (¢, &) are independent, provided that the supports
of the test functions ¢, are disjoint (i.e., ¢p1p = 0).

4. We have for ¢ € Ly(R)

E(/RQS(t)g(t)dt)Q:/Rqﬁ(t)th (12.2.12)

which can be interpreted as

EE(t)E(s) = 3(t — s) (12.2.13)

5. For any ¢ € Ly(R)

Eei Jr 060 _ =5 [ o)?dt (12.2.14)
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6. £(t) is a stationary process, meaning that there is a one-parameter
group T; of measure preserving transformations of (2, F, P) such that

E(t+ s)(w) = &(t)(Ts(w)) for any ¢, s.

(Deciphering: T,Ts = Ty, T,(A) € F and P(T,(A)) = P(A) for any
AeF)

Exercise 12.2.1 Prove the above statements.
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13.1 Why the white noise is white?

The white noise £ can be characterized as a generalized Gaussian process
such that for ¢ € Ly(R)

Ee'Jr 6060 — =5 fp 00t (13.1.1)

One of the interpretations of the property (13.1.1) is that the distribution P
of £ is the canonical centered Gaussian measure in the Hilbert space Lo(R).
This should not be taken literally, for the Pe-measure of Ly(R) is zero, and
sample pathes of £ are generalized functions. However, it is true that any
orthogonal transformation of Ly(R) which can be continuously extended to
the space of the Schwartz distributions (of polynomial growth) defines a
measure preserving transformation. In particular, the Fourier transform

~ 1

Fro Bl == [ epioya

of Ly(R) defines a new version & of the initial white noise. The distribution
Pg of Ecoincides with that of &.

To answer the title question we have to define the spectrum of a more or
less arbitrary function, and declare a function representing white noise, if the

spectrum is uniform in a suitable sense. We start with a finite superposition

of harmonics A
Ft) =Y ae™ (13.1.2)
A

105
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In this case we define the spectrum of f as the sum of d-measures:

Spec ;(u) Z |ax |26 (X — u) (13.1.3)

In other words, Spec; is a measure on R such that Spec(A) =3 ., |ax|*.

One can see easily that the autocorrelation function ¢ (s) = (f(t-+s)f(1)),
where the angular brackets stand for averaging w.r.t., time has the form

- ‘ — 2 z)\s
dr(s) Tlgr;o 2T/ flt+s)f(t) Z\a e (13.1.4)

Thus, it is the Fourier transform of Spec,, and

1 .
Specy(u) = %/Re_“’%f(t)dt (13.1.5)

One can also easily check that
/ f )ds

Exercise 13.1.1 Prove the above formulae (15.1.4)-(13.1.6).

du (13.1.6)

e—0 271

Spec;(A) = hm—/ 5

Now we can state the whiteness of the white noise precisely in at least two
ways:

The autocorrelation function ¢¢(s) = §(s) with probability 1.  (13.1.7)

The function s.(u) & =

[ g(s)ds‘ tends weakly to 1 with ~ (13.1.8)

probability 1 as e — 0.

Here, the autocorrelation function ¢ of the distribution § is defined as
follows: First, we note that the distribution £(¢)£(s) of two variables is well-
defined via

//g dtds_/g dt/g(s)h(s)ds

Then, we define ¢, 1 via

[ trtwgin =5 [ [ €0 mn®ats - s,
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and finally define ¢ = limp_, ¢¢p, if the limit exists in the topology of
distributions.

We note first, that the statements (13.1.7), (13.1.8) are true at the level
of mathematical expectations: Indeed,

/¢§T u)du = —— // () g(s — t)dtds =

- / / 5(t = $)1 7.11(t)g(s — t)dtds = g(0)

which proves that E¢gr = 0. Similarly,

for any € > 0.
Now we prove a weaker Lo-version of (13.1.8). Put o (u) = sc(u) — 1. We

have to show that )
limE </ ae(u)du> =0 (13.1.9)
e—0 A

for any interval A. We divide A into sum of nonoverlapping intervals A =
Ak, k=1,..., N such that € < length(A4;) < 2¢ and put 7, = fA o (u

Then En, = O, En? < |Ag?, where A < B stands for A < C'B Wlth an
absolute constant C, and Engn,; = 0 if |k — j| > 1 (prove it!). Therefore,

E(/A (u du) _E<an> <<i::|Ak|2<<N€2<<€

which proves (13.1.9).
We leave proving an Lo-version of (13.1.7) as an exercise for the listener.

13.2 Quantum mechanics and functional in-
tegrals

We turn to another naive interpretation of the basic property (13.1.1) of the
white noise, which in a sense means that the distribution F% is the canonical
Gaussian distribution in the Hilbert space Ly(R). It is also the canonical
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Gaussian distribution in the Hilbert space Ly([a, b]) for any interval [a, b]. In
a finite dimensional Hilbert space the canonical Gaussian distribution has
the form

dP(z) = e~ 2l gy

up to a constant multiplier, where doz = dx dxs ... dxy is the Lebesgue mea-
sure. This suggests that that we can think of P in a similar way, and that

dPy(z) = e 320" TT da(t) (13.2.1)

t€[a,b]

up to an irrelevant constant multiplier, where z is an arbitrary function from
Lo([a,b]) and TT;dx(t) is a kind of the Lebesgue measure.

Another way to arrive at (13.2.1) is via approximation of the white noise
by a piecewise constant random noise. Fix a large integer N and consider a
piecewise constant centered Gaussian process &y (t) = &n(x [Nt]), t € [a,b)
such that {y(%) are independent for different integers k and E€y(£)* = N.
It is an approximation of the white noise from many points of view. In
particular, the analogue of (13.2.1)

1 b 2 dllf(t)
AP, (z) = ez Ja 2O)7dt , 13.2.2
fN( ) ,H \/% ( )
t:NE[a,b)
where z is an arbitrary piecewise (each piece being [%, %)) constant func-

tion, holds true for the distribution of £y in the space of piecewise constant
functions z(¢) in the interval [a, b) with ends of the form £ (prove it!).

The formula (13.2.1) takes even more suggestive form if we consider the
Brownian motion w(t) instead of the white noise £(¢) = w(t). Namely,

_1 b dx(t)
de ) = e é f: &(t)2dt
() tgb] o

(13.2.3)

and the factor e~ J #(t)°dt — e~%@) where S(x) is the action of a free particle
moving in one dimension along the trajectory z(¢). This resembles very
much the Feynman approach to quantum mechanics via path integrals. His
approach is not at all rigorous, but very suggestive. One of the basic formulas
in the Feynman theory is this:

i 5 dv(s)
exp(=TH)(x,y) = / enS( (13.2.4)
h QT,z,y) SGI[E!ZT] Vo
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Here, H is the Hamiltonian of a quantum system, exp(%TH ) is the opera-
tor of evolution, exp(;TH)(x,y) is the integral kernel of this operator, and
Q(T,x,y) is the space of paths v that start from z and end at y

QT z,y) = {y:7(0) =z, v(T) = y} (13.2.5)

This can be restated in the form

exp(ATH) f(x) < [exp(ATH)(x,y) [ (y)dy =

o (13.2.6)
f{w(o):m} eﬁs(v)f(W(T)) Hse[o,T] \/V% :
The probabilistic counterpart of (13.2.4) is this:
exp(—TH)(z,y) = / (13.2.7)
Q(T’I’y) s€[0,17]
where S(v) = [ L(+( (t))dt, and L(y(t),%(t)) is the Lagrangian of the
quantum system The counterpart of (13.2.6) is
5 d
exp(—TH) f(z) = / SO ) T 1s) (13.2.8)
{1(0)=x} sefom V2T
Consider now the case of a free particle, when
H=-1(2) and §(y) = — [ Li(t)dt.
In view of (13.2.1), the rigorous meaning of (13.2.8) should be
exp(—TH)f(z) =Ef(z +w(T)). (13.2.9)
This is equivalent to the fact that
D pfter ) = (L) Bre+um) (13.2.10)
arEfle+w 5\ 32 z +w(T)). 2.

To verify (13.2.10) we put y(s) = x+w(s), A = y(T+h)—y(T") and consider
the Taylor expansion

A+ m) — for) = Lana s L0 grpar s asam
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After observing that A is independent of y(T), EA = 0, and EA? = h we

deduce that
B (T + 1)~ F(T)) = 3 - Bf(x -+ w(T)h -+ o{h)

which is equivalent to (13.2.10).
Exercise 13.2.1 (The Feynman—Kac formula) Suppose that

H= 1 (%)2 + V(x),

where V' is a bounded continuous function. Then
T
exp(-TH) ) = Bf D) exo (= [ Vistos)
0

where x(t) = x+w(t). [Hint: Put 2(t) = exp (— fot V(:z:(s))ds), and define P, f by
Pif(x) = Ef(x(t))z(t). By using (13.2.11) and 2(T+h) —2(T) = V(z(T))z(T)h+
0(h) show that atPtf( x) = P.H f and deduce from this that %Ptf(x) = HP,f]

Another, and more “reliable” way to prove (13.2.9) is as follows: We show
first, that it suffices to check it for f(z) of the form e**. Then, it remains to
perform an easy calculation of both sides of (13.2.9) by using (13.1.1). We
leave filling the detail as an exercise for the listener.

The right-hand side of (13.2.7) has the form

; dv(s)
SOre) / 5 N (13.2.12)
/Q(T,x,y) Q(T,0,0) H V2T

s€[0,T
where v,, is the straight line %y( ) = » + #(y — x) connecting z with y,
because S(v,, +7) = S(7) + S(’ym y) when v € Q(7,0,0). Therefore, the

right-hand side of (13.2.7) is e~ S Cr, where Cr does not depend on z, y.
Since [exp(—=TH)(z,y)dy = 1 we obtain that Cp = (2rT)~"/2, and, finally,

_@—w)?
—TH( o e 2T

z,Y) =
v) V2o
which is a well-known (Poisson’s) formula for the heat kernel.

Thus, the free quantum particle is in a sense a Brownian particle moving
along the imaginary time axis.

e (13.2.13)
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13.3 Girsanov’s theorem

Now we will use the basic formula (13.2.1) in order to get (rigorously) im-
portant properties of the white noise. First of them is the following formula
for the change of the measure P; under the shift £(¢) — n(t) = £{(¢) + h(t) in
the Hilbert space Ly([a, b]):

. 1 b b

dP,(y) € dP(y — h) = exp (-5/ th7§+/ hydt) dP:(y)  (13.3.1)

which is quite obvious after substitution x(¢) = y(¢) — h(¢) in (13.2.1). Rigor-
ously, (13.3.1) means the following.

Theorem 13.3.1 (Cameron — Martin — Girsanov theorem) Suppose that h €
Ly([a,b]) and f is a measurable bounded functional in the space of Schwartz
distributions such that it depends only on restriction of a distribution on
la,b]. Then,

1 b
/ (& + h)dPy(x) = / exp (-5 / B2t + / hydt) F)dPe(y). (13.3.2)
Proof (sketch). Tt suffices to consider functionals of the form

fy) = exp(i(d, ),

where ¢ is a test function. For f of this form the result follows from (13.1.1)
(provide detail!).
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Chapter 14

Kalman Filter 1

14.1 Equations for the conditional density

We study a two-component stochastic process governed by
& = Ax + BE, (14.1.1)
where £ is a white noise. And we observe a process y related to x via
y=Cz+n, y(0) =0, (14.1.2)

where 7 is another white noise independent of £. We are interested in the
evolution of the conditional density p(¢, z) for the process x. This density is
defined via

/u(z)p(t, z) dz=E(u(z(t))|F), (14.1.3)

where the o-algebra F; is generated by y(7), 7 € [0,1]. In other words, if we
denote by y' the process y restricted to [0,¢], then

B(( [ u@httoa) o)) =B @on). (L

where v(y') is any measurable functional.

Now we invoke the Girsanov theorem 13.3.1 about dependence of the
probability measure on pathes [0, 7] 5 t — y(t) on the drift h = Cz. Namely,
denote this measure by P". The measure P = P is the Wiener (white noise)
measure. The Girsanov formula tells:

%((yy)) = eXPp <_% /OT | (s)ds + /OTUL(S),y(S))) : (14.1.5)

113
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where h(s) is a shortening for h(z(s)).
Denote the right-hand side of (14.1.5) by ¢(T) = ¢(T,z",y"), where
2Tyl are trajectories of our diffusion processes in the time interval [0, T,
and by P denote the measure of the process . One sees immediately (see
lecture 10 equation (1.2)) that the conditional density p(t,z) = p(t, z,y") is
defined by
_ Julz®)e(t,2*, y')dP(a")
 wamteans = e

We note first that if we know the conditional density p(¢,z) up to a scalar
factor A(¢), then we can restore p(t,z) due to normalization [ p(t,z)dz = 1.
Second, we note that that one can replace P(dz') in both numerator and
denominator integral in (14.1.6) with P(dzT), where T is any time > t.
Indeed, the drift coefficient corresponding to times > ¢ does not affect z(t)
and y', and, therefore, the conditional probability p(t, ).

Therefore, it suffices to find the conditional density up to a constant, and,
thus, it suffices to find p(¢, x) defined by

(14.1.6)

/u(z)p(t,x)dx = /u(m(t))qﬁ(t,xt,yt)d’P(xT) (14.1.7)

because p(t,z) = p(t,z)/A(t), where A(t) = [ o(t, 2", y")dP(zT). In other
words, [ u(x)p(t, z)dz is equal to

/u(x(t))exp (—%/Ot|h|2(s)ds+/0t(h(s),y(s))> AP, (14.18)

or what is equivalent

B (ua0)ew (- [ 1cap@is+ [(@rtnuin)). as19

In a sense the preceding formula gives an explicit expression for p(¢, ), which
is, however, rather impractical. There are, however, at least two ways to deal
with (14.1.8): 1) rewrite it as a functional integral obtained by quantization
of a classical Hamiltonian system, and then try to compute it in classical
terms, 2) find an evolutional equation for p(¢,z) and solve it. In fact, both
approaches are intimately related. In this lecture we will follow the second
path.
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The Zakai equation
Let us study a simpler Kolmogorov’s equation which is the evolutional equa-
tion for (conditional) density p(t,2) when there are no condition (observa-
tion). The density p(¢, x) is defined via

/n p(T, z)u(x)dx = Eu(z(T)). (14.1.10)

We will need the infinitesimal operator £ of the process x defined via

def /o O L0 L0
L= <f,%>+<g 509 a$>, (14.1.11)

where f(z) = Az, g(z) = B, and the bracketed expressions are >, fiz>-,
; :

resp. %ZJ (ZZ gija%i) )

Theorem 14.1.1

%p(t, z) = Lp(t, x), (14.1.12)

where L* is the adjoint operator for L.

Proof. (At Physical level of rigor) The statement is equivalent to

0

a—TEu(x(T)) =ELu(z(T)) (14.1.13)
for any smooth function v with compact support. The subsequent arguments
are based on the idea that the process x(t) has increments of order h'/? of
magnitude in time h, therefore to compute u(z(t 4+ h)) with accuracy o(h)
one has to consider first two terms of the Taylor expansion of u at point z(t).

Now we consider the finite difference
E(u(z(T + h)) — u(z(T))) (14.1.14)
and expand the integrand into the Taylor series:

ou 1,0%u 3

e Azx) + §<wa, Azx) + O(Azx”), (14.1.15)
where derivatives are taken at z(7) and Az = x(T + h) — z(T). Now, in
view of (15.1.1) we have z(T' + h) — x(T) = A(T)z(T) + A + o(h), where the
vector A is defined as

u(z(T + h)) —u(z(T)) = (

A= [ 0w B

T
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where ®(T + h, s) is the fundamental matrix of the linear system i = Ax.
The most important properties of A are the following:

1. A is independent of the o-algebra Fr generated by {(s), s < T. In
particular, it is independent of $%(z(T)) and %(l‘(T))

(prove it!) By using the above properties of A, we infer from (14.1.15) that

Ju 1 /0%, 3
E(u(z(T+h))—u(xz(T))) = hE <<8_x’Ax> +3 <@BB >>+O(A )+o(h)
(14.1.16)
which implies (14.1.13) »
Now, we proceed to the evolutional equation for the conditional pseudo-
density p(t,x).

Theorem 14.1.2 (the Zakai theorem [22])

0 1

where L* is the adjoint operator for L.

Proof is similar to the preceding one (however it is harder to make it rigorous)
and the primary part of it is left to the reader. The statement is equivalent
to

3E (u(o(®) exp (3 [ 1CzP(s)ds + [(Ca(s),u(5))) =

(14.1.18)
E (£ — 3|Cax ()]’ + (Cx(t), y(1)) ulx(t))
for any smooth function u with compact support. »
We will call the operator
* 1 2
Z=L— 5\03:\ + (Cz,y) (14.1.19)

in the right-hand side of (14.1.17) the Zakai operator.
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14.2 The Kalman filter

The problem resolved by Kalman and Bucy was about filtering (Gaussian)
diffusion processes governed by linear equations:

t = Ax+ B¢
(14.2.1)
y = Cz+n

where &, n are independent white noises, and the matrices A, B,C might
depend on time. The initial value z(0) is a Gaussian random vector. The
process y is observed, and one has to find the conditional distribution p(z) =
p(t,x) of z(¢) if the (generalized) sample path y' of the process y up to time
t is known. Since the conditional distribution is Gaussian, then

p(z) = C"exp (—%(Rl(aﬁ —m),x — m)) : (14.2.2)

where C" = (det 2 R)~'/? is a well-known irrelevant constant, m = E(x(t)|y")
is the conditional expectation of x(¢), the conditional covariance matrix R is
defined by (R&,n) = E ((x(t) — m, &) {x(t) —m,n)). All quantities involved
might depend on time ¢.

It is clear that the determination of (the evolution of) p(z) is equivalent
to the determination of m and R. We proceed from the Zakai equations
(14.1.17). The Zakai operator Z from (14.1.19) takes the form:

oN 1/ o\ 1, .

What is very special about the Zakai operator Z is that it naturally operates
on the Heisenberg algebra.

14.2.1 Heisenberg algebra

This is the Lie algebra b of differential operators M (&, n, A), where &, € R,
and A € R of the form

M(&,n, ) = <§7 %> + (n,z) + A (14.2.4)
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which act on, say, smooth functions of x € R”. Here, Lie algebra means
exactly that the commutator of two operators from k is again in h. Indeed,
the commutator is given by

(M, X), M(E", 0", )] = M(0,0,w((&,7), (£",0"))). (14.2.5)

Here, w is a symplectic form on the space R?" given by
w((gl) 77,)7 (5”7 77”)) - <§l7 77”> - <§”7 77/>

The differential operators of the form

(¢ g ) (€ g ) ) o) () (€1 0) (1420)

normalize the Heisenberg algebra, meaning that if operator A belongs to the
list (14.2.6), and B € b, then the commutator [A, B] € h. This immediately
implies that the Zakai operator Z from (14.2.3) normalizes . Suppose, that
an operator A normalizes h. Define 7(A) : h — b by 7(A)B = [A, B] (adjoint
representation). One can easily give an explicit form of the operator 7(%),
where Z is the Zakai operator (14.2.3).

Namely, introduce the matrix

A BDB*
2y = ( O A ) (14.2.7)
Then,
T(Z)M(&,n, A) = M(E. 0, (£, C™y)) (14.2.8)
where
& 7)) = Zo(&,m)" (14.2.9)

We note, that the matrix Z; is infinitesimally symplectic, meaning that
w(Zou, v) + w(u, Zyv) = 0 for any u,v € R*™.

Moreover, this is the matrix of a linear Hamiltonian system with the Hamil-
tonian function

9(6m) = (A6 ) + Bl ~ el
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Another important for us aspect of the Heisenberg algebra is that it is
intimately connected with the Gaussian functions. Namely, a trivial compu-
tation shows that M (&, n, A)p, where p is the Gaussian function (14.2.2), is
given by

M(& n, Np(z) = (<x, n— R+ (m, R + /\) p(z). (14.2.10)

In particular, M (&, n, A)p = 0 is equivalent to two conditions

§ = Rn,
X = —(m) (14.2.11)

Conversely, if a function f satisfy M(&,n,A)f = 0 for each triple & n, A
such that the condition (14.2.11) holds, then f coincides with the Gaussian
function (14.2.2) up to a constant multiplier.

14.2.2 Lax type equations

Now our problem is this: We are looking for a Gaussian solution p(t, z) of
p=2Zp (14.2.12)

Note, that Gaussian here means proportional, not necessarily equal to a Ga-
ussian probability distribution. We will indicate the dependence of diffe-
rent objects of time by the subscript ¢, and suppose that Mypy = 0, where
My = M(&,m, A). If M is a solution of

M = [z, M], (14.2.13)
then one can easily check that ¢ = M p satisfies
b= Z¢. (14.2.14)
Since ¢g = 0, we obtain that
Mp =0 at any time t. (14.2.15)

Now, we can combine these arguments with that of the preceding subsection,
and conclude that if M; = M (&, n:, A) is the solution of the linear equation

M =T7(Z)M (14.2.16)
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on the Heisenberg algebra, and if
o = Romo, (Mo, mo) + Ao = 0, (14.2.17)

then
& = Rune, (me, me) + A =0 (14.2.18)

at any time ¢. It remains to see that equations (14.2.16), (14.2.18) together
with (14.2.8), (14.2.9) determine the Kalman filter.

14.2.3 The Riccatti equation
We have to differentiate the first equation (14.2.18) w.r.t. time ¢. This gives

£ = Ry + R, (14.2.19)

while '
£ =A¢+ BB'n= (AR + BB")n,

and
n=0C"C¢— A*n=(C*CR— A")n
by virtue of (14.2.8) and (14.2.18).
Combining the above equations, we get

(AR+ BB*)n = Rn+ R(C*CR — A*)p
for any 7. In other words,
R= AR+ RA* + BB* — RC*CR, (14.2.20)

which is the celebrated Riccatti equation. Its salient feature is that it does
not depend on observations.
Similarly, by differentiation of the second equation (14.2.18), we get
0 = (rin,n) + (m, i) + A
= (m,n) + (m, (C*CR — A*)n) — (Rn,C"y),

or what is the same

m = (A — RC*"C)m + RC™y. (14.2.21)
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Some people prefer another form of this equation:
dm = Amdt + RC*(y — Cm)dt, (14.2.22)

because (y — C'm)dt is the differential of a new Wiener process (innovation

process).
Equations (14.2.20) and (14.2.21) are the classical Kalman — Bucy equa-
tions from [16].
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Chapter 15

The Kalman Filter 11

15.1 The filtering problem

We study a two-component stochastic process governed by
& = Ax + BE, (15.1.1)
where £ is a white noise. And we observe a process y related to x via
y=Cz+mn, y(0)=0, (15.1.2)

where 7 is another white noise independent of £&. We assume, that the matri-
ces are locally-bounded measurable functions of time. Our main task here is
to describe the evolution of the conditional mean of the unobservable vector
my = T; = E(z]yl), where y} stands for the observed trajectory 7 — y(7),
T € [0,1].

15.1.1 Innovation process

We invoke an important notion of the innovation process: the stochastic
process
2e =y — Cymy = Cy(ay — my) + 0. (15.1.3)

This process possesses two basic properties:

1. This is a white noise.

2. The knowledge of trajectory z§ contains the same information as the
knowledge of y.

123
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To establish these properties we need some preparation. For starters, it is
clear that if one knows g, then, the m, is also known as well as z, = y;—Cymy.
Thus, y§ contains no less information than z{.

All the processes involved are Gaussian. Moreover, we can assume that
these processes are also centered. This implies that the conditional mean m;
is given by a linear integral functional of y{, i.e.,

¢ ¢
my = / K(t, s)ysds, where / |K(t,s)*ds < o0 (15.1.4)
0 0

for some deterministic square-integrable kernel K(¢,s). Here, K (¢, s) is a
matrix, and |K|* = Tr(K K*). Moreover, for any finite T > 0 the norm given
by |K|]? = [|[K||3 = sup [ |K(t,s)ds is finite.

t€[0,T7]
Exercise 15.1.1 Prove the above statement (15.1.4).

Hint: Derive from the decomposition y = Cz+n, where x and n are indepen-
dent, that E| [(k(s),y(s))ds[> > [5 |k(s)|*ds for any deterministic function
k.

Therefore, the processes y;, z; are related by the Volterra equation

2 =Y — /Ot C(t)K(t, s)ysds (15.1.5)

with a square-integrable kernel. One can, however, find a unique solution y
of the above Volterra equation

t
Y =2+ / K(t,s)zds, (15.1.6)
0

where K(t, s) is another square-integrable kernel.
Exercise 15.1.2 Prove the inversion formula (15.1.6).

Hint: One can write (15.1.5) in the form z = (1 — K)y, where K is the
Volterra integral operator with kernel k(t,s) = C(¢)K(t,s). Formally,

y=(1-K)"z2=(> K"z

and it remains to prove, that the Neumann series » K™ converges in the
space of Volterra operators with square-integrable kernels. But, the kernel
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of K™ is ky(t,s) = [ k(t,s1)k(s1,82) - k(sn_1,8)ds1 - - - dsp_1, where the in-

tegral is over {(s1,...,8, 1) 1t > 81 > ...S,1 > s} and the squared norm
t 2 .

Jo 1kn(t, s)?ds is less than

A2 =

ct n—1
((nzl)' /|k:(t, sOP (51,50 -« [k (5n_vs 8)[2dsy - - - dsp_yds,

where ¢ = ¢, is a constant. It is easy to see that if £ < T', then

(cT)n1
(n—1)!

A2 < | E[17",

so that the series > A, converges.

In particular, it follows from (15.1.5), (15.1.6) that trajectories z§ and v}
contain the same amount of information.

Now, consider the covariance R,.(t,s) = E(z; ® z;). Here, we use the
notation z @ y for the matrix with components (z ® y)i; = z;y;.

Exercise 15.1.3 Prove that (Az)®y = A(z®y), and 2 ® (By) = (z®y)B*.

We have for ¢t > s that

R..(t,s) =E(Ci(ws —my) +m) @ 2) =E(; @ z5) =E (n, @) = 0(t—5).

(15.1.7)
Indeed, x; — m; is not correlated with ys for s < ¢, which proves the second
identity. The random variable 7, is independent of &, and 7, for s < ¢. This
implies, that 7; is independent of z, — m; if s < t. By continuity the same
holds for s = ¢, and this explains the third identity. The last identity holds,
since 1, is a white noise.

Exercise 15.1.4 Why the continuity arguments do not prove that n; and ns
are always independent?

It follows from (15.1.7), that the generalized stochastic process z; is a white

noise.

15.1.2 Equations for the conditional mean

Consider a random vector X which is jointly Gaussian with the process
y(t). One can write a canonical representation of the conditional expectation
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M = B(X]y}) as
M = / K(s)2(s)ds, where K(s) = B(X ® =(s)). (15.1.8)

Indeed, if M is given by the above formula, then X — M is not correlated
with z,, provided that 0 < s < ¢. Here, K(s) is a square-integrable function:

/ K(s Y*ds = E|M> < E|X% (15.1.9)

Exercise 15.1.5 Prove the above formula.

If we deal with a jointly Gaussian process X (t),y(t) one can rewrite the
identity (15.1.8) in the form

M; = E(X,|y}) = /o K(t,s)z(s)ds, where K(t,s) = E(X(t) ® z(s)).

(15.1.10)
The latter formula is meaningful even if the process X; is generalized. Then,
the kernel K (t, s) is a distribution wrt the argument s.

Exercise 15.1.6 Make the preceding statement about generalized processes
precise and prove it.

The conditional expectation m; of the unobservable process x; should satisfy

an equation of the form
m = Am + Dz, (15.1.11)

where the matrix D = D; is to be found. Indeed, the process

n(t) = m(t) — Am(t)

is the conditional mathematical expectation

n(t) = E(@(t) — Az(t)lyp) = E(B®)E()lyo)

of the process v(t) = B(t)&(t). The process v; is independent of y§ for
t > s due to the fact, that the white noise & is 1ndependent of 50 and 7;.
Therefore, in the canonical representation E(v|yf) = fo s)ds the
Schwartz distribution K (s) = s — K(t, s) is supported in ¢. ThlS means in
general, that K (s) is a finite sum

=Y ax(9/0s)"8(s — 1), (15.1.12)

where q; are some matrices.
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Exercise 15.1.7 Prove the structural formula (15.1.12) for a Schwartz dis-
tribution such that its support is contained in {t}.

In our particular situation, the distribution K (s) is not very singular. More
precisely, it is a derivative of a square-integrable function, because the gene-
ralized process v, is a derivative a continuous process with square-integrable
values. This implies, that the only nonvanishing term in the above finite sum
corresponds to k£ = 0, so that E(|yf) = D(t)z(t) and (15.1.11) is proved.

In order to find the matrix D we put
K(t, 5) = E(xt b2 Zs) = E(mt b2 25)7

so that
t
mt:/ K(t,s)z(s)ds (15.1.13)
0

is the canonical representation of m;. Then,
K(t,s) =E(z; @ C(zs — my)) = E(x; ® (x5 —my))C*, C = C(s),

because z; = C (x5 — my) + 1 and 7, is independent of z;. Now, we obtain
from (15.1.11) and (15.1.13) that

%K(t, s) = A()K(t,s) + D(£)S(t — 3).

Exercise 15.1.8 Deduce from the above identity, that D(t) = K (t,1).
Moreover, it is easy to see (provide details!) that
E(z, ® (2, —my)) = E((ze — my) @ (z, — my)) = R(t, ),
where the last identity is the definition. Thus, we deduce that
m = Am + PC*z, (15.1.14)

where P(t) = R(t, ).
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15.1.3 The Riccati equation
Now, we obtain from (15.1.14) and (15.1.3) that

m = Am + PC*C(x —m) + PC*p
P e e (15.1.15)

and, therefore, for * =z — m we get
T =A% + B¢, where A=A — PC*C,B=[B — PC*],( = { g } (15.1.16)
Here, [B — PC*] is a compound matrix made of columns of matrices B and
—PC*. The above equation implies, that
P = AP+ PA* + BB, (15.1.17)
where BB* = BB* + PC*CP. Indeed, the general statement is this:

Suppose, that
&= Az + B¢, x(0) =0,

where ¢ is a white noise, and P(t) = E(z(t) ® 2(t)). Then,

P = AP + PA* + BB". (15.1.18)
To prove (15.1.18) we use the Cauchy formula z(t) = fot O(t,s)E(s)ds. Then
=E ([, (L, ) B)é(u)du® [, O(t,0) B)E(v)dv) =

fo fo t,u)B(u E(f(u) R &(v))B(v) ®(t ,v) dudv =
[5 ®(t, 5)B(s)B(s)* ®(t, 5)*ds,

where the last equality follows from E(£(u) ® £(v)) = 6(u — v).
By differentiating P(t) we obtain

P(t) = BO)B(t)* + [, A(t)(t, s)B(s)B(s)*®(t, 5)*ds+
Jy et ><>B<s> (t, > <>d
A()P(1) + P(O)A@®)* + B(t)B(t),

which coincides with (15.1.18). Finally, we get that
P = AP+ PA* — PC*CP + BB*, (15.1.19)

which is the celebrated Riccati equation.
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15.1.4 The Kalman-Bucy filter

The final equations

m=(A— PC*C)m+ PC*y

P = AP+ PA* — PC*CP + BB* (15.1.20)

determine the classical Kalman — Bucy filter. The equation (15.1.14) is an-
other equivalent form of the first equation (15.1.20).
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