Daniela M arinova

OPTIMAL CONTROL

CLASSICAL APPROACHES AND NEW TRENDS

Eudaimonia Production Ltd.

Sofia,
2014



OPTIMAL CONTROL

(CLASSICAL APPROACHES AND NEW TRENDS)
Textbook

First edition

Sofia, 2014

Author: Daniela Gancheva Marinova
Reviewer: prof. Mihail Konstantinov, PhD

Publisher: Eudaimonia Production Ltd.
Contact person: Angel Marchev, Jr.
e-mail: angel.marchev@basaga.org
phone: +359888444062

The author takes full responsibility for the austop and the originality of the
work, as well for mistakes due to her fault. Théhau retains all copyrights on
her publication.

Print book:ISBN 978-619-7209-01-3
E-book: ISBN 978-619-7209-02-0



Contents

Preface

1. Control of systems

1.1 Preiminary
1.2 Mathematical modeling
1.3 General propertiesof control systems

1.3.1 Definitions

1.3.2 Attainability relation
1.3.3 Linear systems
1.3.4 Controllability

1.4 Optimal control and related results

1.4.1 Optimal control

1.4.2 The existence of optimal control

1.4.3. Invariant sets

1.4.4 Stability of invariant sets

1.4.5 Attractors and repellers

1.4.6 Attracting, repelling and saddle holding sets
1.4.7 Periodic orbits

2. Global optimal methods

2.1 The Hamilton-Jacobi theory

2.1.1 Introduction
2.1.2 Global sufficient conditions

2.2TheLQ problem

2.2.1 Introduction

2.2.2 Finite control horizon
2.2.3 Infinite control horizon
2.2.4 Optimal regulator

2.2.4.1 Stability properties
2.2.4.2 Robustness properties
2.2.4.3 The cheap control
2.2.4.4 The inverse problem

2.3LQG problem

2.3.1 Introduction
2.3.2 Kalman filter

15

15
17
19
20
21
22
23

25

25

25
26

27

27
28
33
34

41
45
46
47

50

50
51



2.3.2.1 Nominal case
2.3.2.2 Singular case
2.3.3 LQG control problem

2.3.3.1 Finite control horizon
2.3.3.2 Infinite control horizon

3. Robust optimal control

3.1 H, Optimal Control: Riccati-Approach

3.1.1 Introduction
3.1.2 Formulation of the genertl, problem

3.1.3 Characterization dfl_ suboptimal controllers
by means of Riccati equations
3.1.3.1 Characterization theorem for output feeklbac
3.1.3.2 Outline of the proof

References

52
57

59

60
61

65

65

65
65

66
66
67

69



Preface

Beginning in the late 1950s and continuing todag,issues concerning dynamic optimization
have received a lot of attention within the framekvof control theory. The impact of optimal
control is witnessed by the magnitude of the warkl ¢he number of results that have been
obtained, spanning theoretical aspects as welppbcations. The need to make a selection
(inside the usually large set of different alteivieg which are available when facing a control
problem) of a strategy both rational and effecizvdikely to be one of the most significant
motivations for the interest devoted to optimaltcoin

A further, and not negligible, reason originateenir the simplicity and the conceptual
clearness of the statement of a standard optimataoproblem: indeed it usually requires
specifying the following three items:

(a) The equations which constitute the model ofcthrgrolled system;

(b) The criterion, referred to as the performanedek, according to which the system
behavior has to be evaluated,;

(c) The set of constraints active on the systentestautput, control variables, not yet
accounted for by the system model.

The difficulties inherent in points (a) and (c) &boare not specific to the optimization
context, while the selection of an adequate perémge index may constitute a challenging
issue. Indeed, the achievement of a certain géedrlg identified on a qualitative basis only)
can often be specified in a variety of forms or rhgans of an expression which is well
defined only as far as its structure is concermgule the values of a set parameters are on the
contrary to be (arbitrary) selected. However, teature of optimal control problems, which
might appear as capable of raising serious ditiies| frequently proves to be expedient,
whenever it is suitably exploited by the desigmerachieving a satisfactory trade-off among
various, possibly conflicting, and instance throagtequence of rationally performed trials.
The flexibility of optimal control theory togethevhit the availability of suitable computing
instruments has occasionally caused an excessnfileace in its capability to solve (almost
all) problems, thus exposing it to severe critigdsand, as a reaction, giving rise to a similarly
unjustified belief that it was a formally nice, buwssentially useless, mathematical
construction. The truth lying somewhere betweesdhgo extreme points, the contribution
of optimal control theory can be evaluated in aecirway only if an adequate knowledge of
its potentialities and limits has been acquiredhia perspective the motivation of the present
book is twofold: from one side it aims to supplye thasic knowledge of optimal control
theory, while from the other side it provides teguired background for the understanding of
many recent and significant developments in th&l f(lene for all, the control of Hardy
spaces) which are undoubtedly and deeply rootedch a theory.

Three out of the many possible formsrehdezvous problems are now briefly presented in
order to shed light on some typical aspects ofnagiticontrol problems: for this reason it is
useless to mention explicitly the set of equatiwhsch describe the dynamic behavior of the
controlled system and constitute the main, alwagsgnt, constrain.

Problem 1 The initial statex, is given, while the final tim&; when therendezvous takes

place is free since it is the performance indéx be minimized. Thus
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Besides the constraint(t, ) = x,(t;) (which is peculiar to the problem), other requiests

can be set forth us, for instance, <u(t)<u,, which account for limits on the control

actions.
Problem 2 The initial statex,, the initial timet, and the final timet; are given. The final

state is only partially specified (for instanceg tfinal position is given, while the final
velocity is free inside a certain set of valueg) #re performance index aims at evaluating the
global control effort (to be minimized) by meansaofexpression of the kind

t m
J :IZriuiz(t)dt, r.>0
i=1

where u, is thei-th component of the control variable The peculiar constraint of the
problem isx(7) = x, £ ) where the time when therendezvous takes place must satisfy the
conditiont, <7 <t, and may or may not be specified.

Problem 3 This particular version of theendezvous problem is sometimes referred to as the
interception problem. The initial stat&, may or may not be completely specified, while both
the initial and final timeg, andt, are to be selected under the obvious consttait, <T .
The final state is free and the performance indesig Problem 2. The peculiar constraint of
the problem involves some of the state variablég @he positions), {(7) =&, 1 ) where the
time 7 when interception takes place may or may not bergand satisfies the condition
t, <T<t,.



Chapter 1.

Control of systems

1.1 Preliminary

Modern Control theory or Theory of optimal control started in the 1950s. It was to a large
extent of the classic&alculus of variations. However, it actually contained much more. In
more general sens€pntrol theory can be seen as an extension of the theory ofreliffel
equations or of dynamical systems. It is a studglobal properties of certain families of
dynamical systems.

From the beginning, control theory leans towardpliagtion. Some examples in physical
systems are stable performance of motors and maghamd optimal guidance of rockets. In
management it is optimal exploitation of naturatawrces. In economics it is optimal
investment or production strategies. In biology amédicine these are regulation of
physiological functions, fighting against inseatsl&o on.

Any system described by differential equationshaf €volution type, can be converted into a
control system by adding an input variable represgrthe action on someontroller upon
the system. The interpretation of this control asvilful action of a person is just one
possibility. The added input can also be callediseiband represent many factors about
which we may not have any influence nor even kndgde

1.2 Mathematical Modeling

When attempting to study the behavior of certaisteays, it is convenient to consider the
ideal case of arsolated system, i.e. a number of interesting elements, which dohave any
interaction with respect of the world. In sushlated systems the conditions are simpler, and
therefore easier to study.

We may consider systems, which are isolated eXoeome well defined actions affecting
them. We think of this outside action, also calleput or control as the result of decisions of
acontroller. The important information we need is a rile, witthe description of the system,
of which inputs are possible and which are not. plssible inputs will then be called
admissible.

The big difference between systems without and withuts lies in the type of problems,
which are meaningful to be posed for them. Foresystwithout inputs, the basic problem is
to predict the future behavior. For this purpose differential equations are exactly tailored.
But the prediction of future evolution is not thelyp meaningful problem to be posed. The
whole field of engineering and technology dealshvilie inverse problem: given a desired
future evolution, how should we construct the syste

For systems with inputs two of the basic questiames (a) given the initial conditions, which
are the "states" of the system, which we can régathoosing suitable inputs? and (b) which
are thebest inputs to be used in some well prescribed sense?

The mathematical description of a system is giwen Hifferential equation of the type



x=f(t,%), (1.2.1)

where t is the time andx=(x,,X,,...,X,)" is the state. The functidh: RxR" - R",

representing the laws governing the evolution af #ystem, is assumed to be known.
Together with the initial conditions

X(to) = Xo» (1.2.2)

(1.2.1) determines the solutiont (upiquely. If the functiori in (1.2.1) does not depend gn
i.e. of the form

x=f ), (1.2.3)

it means that the systemiisvariant in time and is calledautonomous. For an autonomous
system, ifx { )is a solution, therx(t —t, )s also a solution for ant,. Autonomous systems
are also calledynamical systems. They are geometrically appealing, since the ¢tajges are
fixed curves in] -space.

Any non-autonomous system can be transformed imtaudonomous one by increasing the

dimension of the state spa€€ in one, practically transforming the tinteinto an additional
coordinate of the state space. Hence, most pregesfi autonomous control systems can be
extended, in some sense, to non-autonomous onds.d@og so, in many cases the
corresponding properties loose their interest.

A control system will be described by a differential system

x=1f ¢.x,u), (1.2.4)

where t is the time (independent variableR"is the state of the system and
u=(u,,U,,..,u,) OR™ is thecontrol. The control is assumed to be an arbitrary fumctio
u(t), but some restrictions must be imposed. It mustmeasurable function. Another

restriction of the control which appears in manplegations is the requirement that the values
of u(t) belong to a specified set

u(t) JU (UOR™) (1.2.5)

An admissible control is therefore a measurable functiant  §atisfying (1.2.5). The séi
can be fixed or depending dnand/orx. For each admissible contrait ( 1.2.4) is a
differential equation

x=f{xut))

Its solution x { ) (expected to exist and be unique) is then alsedadmissible solution
(alsotrajectory or orbit).

For an autonomous control systemt x(u ,ddes not contaih and the constraint U is
also independent of

x=f &u), ullu , (1.2.6)

The pairs of admissible control and admissible tsmuare time invarianiWhen the "modern
control theory" developed, it was mostly as a "tlgeof optimal control". The techniques
involved were from the theory of differential egoas, but the problem setting was usually
an optimization of a given functional. It was, tire, a somewhat particular case within the
much older "classical calculus of variations".



The classical calculus of variations extends tle®mt of maxima and minima from calculus
to functional analysis, where the unknown is nealme ofx, but a whole functiorx(t) .

In classical theory, the unknown is consistentlguased to be aimnterior point of some
domain in this function space. In many importarghpems this is certainly not the case. The
customary linear feedback controls did not satiaflythe requirements of the emerging
applications. Discontinuous feedback controls wpnge efficient but not fit into any general
theory. Pontryagin succeeded in developing a thebigontrol optimization which, contrary
to the classical calculus of variations, could taleee of discontinuous controlst (gnd

unilateral constraints.

1.3 General properties of control systems

1.3.1 Definitions

We will refer mainly to the continuous case forgasses described by differential equations
x=1 ¢,x,u), u(t)ou , (1.3.1)

wheret 1 O R is thought as the times OO O R" is the state and OU O R™ is the control.
The statex and the controll are assumed to be functionstoThis control system is therefore

determined by the functioh and the control set). The function f :1 xR"xU - R" is
assumed continuous irx (,, kipschiz inx, measurable ih Furthermore, it is assumed that

for all uDU andx in any given compact subset &", there exists a majorizing integrable
function m¢ ) such that

| @& % u)|<m().
Under these conditions, givep, X, as initial conditions
X(to) = Xy (1.3.2)
and given a measurable functiomt (with values in U, defined in some interval
| =[t,,t,],the well known Caratheodory conditions guarankeedxistence and uniqueness
of a solutionx { )of the initial value problem (1.3.1),(1.3.2), aast in some intervdt,,t").

The admissible controli t (,)defined on a suitableinterval I, is an integrable function

mappingl into the control set.
For each particular choice of the admissible conuft), the problem reduces to the

integration of the differential equation (3.1) (wée ¢ ) is then known), hence, control theory

could be expected not to present any new probl8uisthis only refers to finding particular
solutionsx { ) while a great variety of other problems can &lsg@osed referring to the set of
all solutions. Let us see a simple example.

Example 1.3.1
Let the state spade be the real line and consider the control systefimel by

X=u, lut) <1. (1.3.3)
With the initial condition



X(0) = X,

the solution is
t
X(t) = X, + j u(s)ds. (1.3.4)
0

Now we can start posing problems. A basic questidrat is the set of pointg(t) obtained
for all possible choices of admissible contrals ,(fgr a given end-timé&? This set will be
calledAttainable set at t, starting from x, at time t,, and denoted bw(t,t,, X, .)

It is immediate that, with a maximum velocity eqt@ll in either direction, the attainable set
is the interval between the poinkg =t. These two end-points can be attained in only one

A
Xgt+t
X

Xp

>
Xg-tf------- x t t

way: using (3.4)u(s) = or u(s) =-1all the time. For all the points likg, in between, the
control u (8) satisfying (3.3) and accomplishingt) = x; is not uniquely determined.

The class of control systems which are lineafxru , j.e. are of the form
x=A(t)x+B(t)u+ct)

with A and B suitable matrices armda vector, are very important. They can model many
applications and at the same time are easy to sodiytically. In the most cases the term
c(t) is set equal to zero, since this is the case istrapplications. Hence, we will consider
thelinear control system

Xx=A(t)x + B(t)u (1.3.5)
with initial conditions
X(to) = X, - (1.3.6)

The solution of initial-value problem (1.3.5),(36Bis given by the "variations of parameters"
formula

X(t) = D(t, t,)%, +Jt'd>(t,s)B(s)u(s)ds. (1.3.7)

Here, ®(t,t, ) is thefundamental matrix of the homogeneous system

X=A(t)xX.

10



This fundamental matrix satisfies the matrix diéfietial equation

% = A()P(t,t,) (1.3.8)

with the initial condition
Oty t,) =1, (1.3.9)
wherel is the identity matrix. It also satisfies the irtability relation
DL, t,) = DP(t,,1). (1.3.10)

Settingu(t) =0, i.e. considering thencontrolled or free system, the solutiow t (is given by
the first term of the right side of (1.3.7). On tiker hand, if we sex, = ,@he solution will

be given by the last term of (1.3.7). This gives fibllowing superposition principle:

The solution of the linear control system (1.3.5) the sum of the solution of the
homogeneous system with the given initial condit{@rB.6) plus the solution of the non-
homogeneous system (1.3.5) with initial conditienaz

Consider the system (1.3.5)-(1.3.6) witht ,(B(), U andt, t, given. Then®(t,t, )is

determined as solution of (1.3.8)-(1.3.10). If vink of inserting in (1.3.7) all admissible
controlsu € ), we will obtain all attainable pointst ( Hence, thattainable set of the linear

control system is

t
At,ty, X,) = P(t,t,)X, +{J'<D(t,s)B(s)u(s)| u() admissible } (1.3.11)
to
the vector-sum of the position of the uncontroltedtion (for u =0) starting atx, plus the
attainable set from the origin.

1.3.2 Attainability relation

Consider an autonomous control system

x=f x,u), uJu (1.3.12)
satisfying the Caratheodory conditions.
Given two pointsx,, X, in O and two numberg,, t, in R t, <t;, we will say thatx,is
attainable at time t; starting from X, at time t,, if there exists an admissible contwolt ()
defined on[t,,t, ] with corresponding trajectorxt @atisfying x(t,) =%,, X(t,) =%,. We
also say thak, is forwardsreachable from X, .
Notice, both words "attainable" and "reachable"sometimes used interchangeably, but here
we will in general use "attainability” when the etirtie is specified and "reachability” when
any end-time may apply.
Since for autonomous systems the attainability wépends only onx,, X, and on the
differencet, —t,, we may refer mostly to, = 8tating thatx, is attainable fromx, att,.
The following properties of the attainability retat are immediate.
« Fort, t, >0, ifyis attainable fronx at timet,, andz is attainable frony at timet,, then

zis attainable fronx at timet, +t,.

11



* If yis reachable from andzis reachable frony, thenz is reachable from.
» Semigroup property of the attainability functioht], t, >0, then

Alt, +1,,x) = UA(tz.Y).

yOA(t, %)

A necessary and sufficient condition for the exiseeof aperiodic solution through the point

x is thatx be attainable from itself at some positive tiper (equivalently) that be reachable
from itself. Consider a control system (1.3.12) amabint x, U . The set of all pointxJ0
such thai is attainable fromx, and conversely, is attainable fronx is calledholding set
from x, and denoted by (x, :)

The intuitive meaning of a holding set is quite ioloi: it is a subset of the state space such
that "we can go" (if "we wish") fronx, to any other poink[JH(x, )and then "come back"
to x,. Since this "going and coming back" will take sofim¢e positive time, we could then

repeat this (if "we wish") indefinitely and staythin H forever. But once we left this
holding setH(x, ) we can never come back xg.

The subset of] of all pointsx with H(x) =0 is called thdransient set and denoted by. x

belongs to the transient sétis there is no admissible solution startingand returning to
after some positive time
Some properties of the holding sets are.

* If bothy andzbelong toH & ) theny[H ¢ )and z[OH (y ).
o If H(X)#0, thenxOH & ).
* If H(x)#0, then there is a periodic solution through

The control system (1.3.12) determines a deconipaosdf the state spacé into: (i) the
transient set and (ii) all the holding sets, eq@raclasses of the mutual reachability.

1.3.3Linear systems
Before showing an example for the holding sets w# ll some words about the
autonomous linear control systems. These are dbthe

X=Ax+Bu, udU. (1.3.14)

The matricesA and B as well as the control s&t must be constant. For constalt the
fundamental matrix of the homogeneous systemAx is

d(t,ty) =exp(Alt —t,)),
where
A%t A%
+
3

If the control is constant, the system can be sblgkegantly. Foru=0 in (1.3.14) the
solution of the differential equation

exp(At) =1 + At + +..

X = AX (1.3.15)

is X(t) = P(t,ty)X, -

12



If u=const. and the matrif is nonsingular the equation (3.14) can be rewritteth the
change of variables

E=x+A"Bu,
obtaining
§=%=Ax+Bu=A(x+ A™'Bu) = Af,
which is the same equation as (1.3.15). Hencesdihgtion is &(t) = ®(t,t,)¢é, in the new
coordinates, and the geometric graph of the trajis is the same as for the homogeneous

system (1.3.15), but translated to the new origjn= , which is x, =—A™Bu. If A is

singular but there exists a matr such thatAC=B, the transformation of coordinates
& =x+ Cu will do the same as before. If such matfixloes not exist, then the trajectories of

the system controlled withu=const. are not the translates of the trajectonésthe
homogeneous system.

Example 1.3.2 (Stable node)
Consider the control system

X ==X tU, X, ==2X, +u, |u<1. (1.3.16)
Here the homogeneous system
X, ==X, X, = —2X,

has a matriXA with two distinct real negative eigenvalues, herbe origin is a stable node
and the solutions are given by

x, =x (0)e™", x,=x,(0)e™.
Hence
X, = CX?

with ¢ being the constant adjusting the initial conditidime trajectories are half-parabolas
converting to the origin.
We absorb the constant controls into the coordadiye rewriting the system equations

foru=1as X ==(x,-1), X, = —2(X, _%);
. : 1
foru=-1as % =-(x +1), X, = =2(X, +§) .

The parabolas convert to the points of attract(ih%) foru=1 and (—l—%) for u=-1.

Starting at any initial point, we can choose to m@long each of these two families of
parabolas. We may switch at any time from one ¢oatther family.
Now we will find out which pointx are reachable from a givery. Settingu = 1for a while,

the pointx(t) will drift asymptotically towards the center otraiction (1, %) . When it is near

this point we may then switch to=- , 5o that the moving poink t ( Jvill start moving

13



asymptotically towards(—],—%). And when it is near this point, we may of coussétch

back again and continue repeating this as manystaseve wish.
The conclusion is that once the poirft) is in the lunette limited by the two points of

attraction and the corresponding arcs of parabblzgn never get out of it (it can not even
reach its boundary in finite time). On the othendhawithin this lunette it can go from any
point to any other point. Therefore, the interibthe lunette is a holding set.

It is important to observe that every vector-diéietial equation of the form

X = AX
can be transformed by a linear change of coordsnate aJordan canonical form with the
new matrixA diagonal or made of special blocks. In the caseesof the eigenvalues éfare

complex, one should use the real canonical form.
Introducing the same change of coordinates to dhéral system

X=Ax+ Bu,
X
o

- /,77 T Xy

) \‘\

matrix A will change into its canonical form. The matixwill change into whatever new
matrix comes out, but the discussion will be easiieceA is canonical.

1.3.4 Controllability

If for a certain control system a pointis not reachable from another poix§, this can be

due to one of the following reasons:

» the admissible controls are not strong enough teramme the other "forces" of the
system;

» all admissible controls act in directions such et matter how strong is the control,
(t,x(t)) stays on some lower dimensional surfaceRN'. For example consider the

system
X, ==X, + X, X, ==X, =X, +U Xy = X; With [u| <1.

It decomposes into two uncoupled subsystems: tloefinst equations and the last one. No
matter how we choose the controk ,(the solution of the third equation

X5 = X, (0)€'

14



will be unaffected. This means that we cannot @dnit, and this system will be calletbt

controllable.
Consider the control system with unbounded controls

x= Ax+Bu, xOR", uOR" (1.3.17)

Let us find the attainable set from origin. With = tite solution is
X(t) :jdl(t, s)Bu(s)ds
0
and the attainable set, a linear subspade'qfis
A(t,0) :{Jt'db(t,s)Bu(s) | u() attainable}.
0

If u, and u, are admissible controls with respective trajee®n, and x, starting at the
origin, thenk,u, +k,u, is also an admissible control for any ré&al k,, and by linearity, the
corresponding trajectory will b&,x, (t) + k,x,(t). The conclusion is that ik, and x, are

attainable from the origin at tintethen any linear combinatioky, x, + k,X, is also attainable

att.
The linear control system (1.3.17)asntrollable if for everyt >0 the attainable set is

At0)=R". (1.3.18)

This immediately implies that alsA(t, x,) = R" for any X, .
Denote byM { )the matrix

M (t) :Jt'CD(t ~-5)BB T (t-s)ds. (1.3.19)

Theorem: A necessary and sufficient condition for systedn8.(17) to be controllable, is that
the matrixM defined by (1.3.19) be positive definite, i.efuf rank.

An equivalent theorem is the following.

Theorem: A necessary and sufficient condition for the colfability of the system (1.3.17) is
that the controllability matrix

[B, AB, A’B,...,A"'B | (1.3.20)

has maximum rank (i.e. ramh.
1.4 Optimal control and related results

1.4.1 Optimal control

Consider the control system
x=1 ¢.x,u), (1.4.1)

with a constant in time constraint

15



u(t) du . (1.4.2)
There may be an initial condition
X(to) = X
and possible end-condition
X(ty) =X, .

In order to optimize something, we define @amective functional (also calledcost or gain
functional) of type

J=9g(t, ,tf)+Jf' fo (S, X(s),u(s))ds (1.4.3)

evaluated along the solutiont (cprresponding to the contralt ( The problem is to find (if
it exists) theoptimal control u”(t) generating theoptimal trajectory x"(t) such that the

corresponding cosl ' is minimum (or maximum). This is called thieoblem of Bolza.
If the termg(t, ,t; )s absent and (4.3) is of the form

J= JL fo (S, X(s),u(s))ds, (1.4.4)

to
it is called theproblem of Lagrange. When the integral is absent, i.e.

J=g(t,,t; ), (2.4.5)
it is called theproblem of Mayer. It can be seen that these problems are equivafemie

sense that each of them can be rewritten as amy tyghe of them.
Quite different is théime optimal problem.

x=f ¢,x,u), ut)U  given,

X, =0,  X(t;)=X,; given, minimizet, .

ty
Here J= J'ldt .
0

It is a Lagrange problem, but with the end-time pagscribed. We wish to drive, using an
admissible controlx t( from the origin to the given target poirt in minimal time.

Once the optimal control problem had been refortedlavith inequality constraints on the
admissible controls, necessary conditions for oglitym had to be found to replace the
classical ones from the calculus of variations. Tas achieved by Pontryagin with what is
called themaximum principle. Here we state it only for a Mayer problem withelar cost
functional.

Consider the problem defined by

x=fx,u,), ut)du, x@©)=x,, maximize J =7x(t; ) (4.6)

where xOR", U O R™ compact, f X y )continuously differentiable, witly andt, given.
Assume that the admissible optimal contdl t (jth corresponding optimal trajectory

16



x"(t) achieve the maximum df Then there exists a non-zeraimensionakdjoined vector
function p(t) satisfying theadjoined differential equation

, of
p=- p[a—} (1.4.7)
X x=x"(t),u=u"(t)
where B—f} Is the jacobian of partial derivatives of the caments of f X u )
X |0y 10
X=X"(t),u=u"(t)

with respect of the components xfevaluated at the optimal solution=x"t () =u"(t),
such that for almost atlin the interval[0, t, ]

p(). f (x°(t),u"(t)) = max{p(t).f (x"(t), u(t))|u OuU}. (1.4.8)
In addition, p { ) should satisfy the end-condition

p(te)=17. (1.4.9)

Condition (1.4.7) can be interpreted as followsc®m ¢) is known, the optimal control

u”(t) should be chosen at each instaas to maximize the scalar produgft).f (x”(t),u , )

hence the term "maximum principle".
For linear control systems of the type

X = Ax+Bu, uJu

the maximum principle applies in a particularly plenway. Hereg—f = A and the adjoined
X
equation (1.4.7) becomes
p=-pA.

It does not depend on eithert (nor x¢) and can be integrated independently of the

optimization criterion. Once the general solutidntlte adjoined system is obtained, each
value of 7 in (1.4.9) will determine a particular solutignt (This is especially well adapted

to determine the attainable set of a linear corslystem at a given final timig .

1.4.2 The existence of optimal contr ol

We will continue with an example. Consider the wati control problem

X = |U| X, = u
ST T

uO[-1+1] . (1.4.10)

Starting at the originy,; (0) = x, (0) =0, we wish to minimize
J=x0.
Foru=0, X, =X, =0 is not desirable. For all other valuesupf

X2 =1,

Xy

17



hence, the trajectories are of the zig-zag typeayd + 1, as seen in figure.. Since

1
xl(l):jﬂds - to be maximized.
2 1+[x,|

We wish to keepu =+1 and also keeﬂ)x2| as small as possible. The best would be to keep

X, =0, but this is not possible since the trajectori@gehto have constantly slopel.
Therefore, to maka large, we should use(t) = +1 and switch quite often, in order to obtain

XzA

VL ANEEEEY AN

/SN .

a zig-zag withx, (t) kept near zero. As more zig=zag's, as betted.tidée limit would be to
have x= 1land x, (t) =0 all the time, but this is impossible because gsloot correspond to

any admissible control. The conclusion is that,dioy positives, values ofJ >1-¢
are possible to obtain, but= id impossible. Hence an optimal control does mgte The
attainable setA (10js not closed, since it does not contain the pdir@). More precisely, if

we would have assumptions guaranteeing that i&@ompact set, then we could argue that

there exists an optimal control and an optimakttgry leading to this point.
Since compact irR" means closed and bounded, and the boundness ditttirable set

usually follows from an upper bound of the admisitelicities ||X|, the crucial point is
therefore to give some sufficient conditions tauesthat the attainable set is closed.

Theorem 1.4.1 Consider the control system
x=f¢,x,u), udUOR"

and assume thésatisfies the conditions:

e f:IxR"xU - R" is continuous in Xy )and integrable with respect tofor every
(x,u), xOO, ubOU ;

- fislipschitz inx, i.e. | f (t, X gy, u) = f(t, Xy, U)] < KXoy =X [
- forall ubU, ||f(t, x u)| < w(t)@(x)) where u {)is integrable in each finite interval
andy(|x)) is bounded in any bounded regionRf;

» the admissibility conditionu t( )s measurable with values
» the convexity condition:f (t,x,U) ={f t(x u |)J U} is convex.

Then the attainable seA(t,x, i3 bounded and closed, hence compact. The lastexin
assumption is violated in the example.
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Theorem 1.4.2 The attainable set of a linear control systemymagsgU convex, is convex.

Theorem 1.4.3 Assume two control systems with the same maté¢&but different control
setsU, andU, . If both control sets have the same convex hull:

co(U,) =co(U,).
Then the attainable sets are the same

A E0)=A, t.0).

This result is remarkable. From it follows thatilhthe linear systems where the control set is
the interval U =[-1+1], this could be replaced by the set of just the tval-points
U={-1+}.

In the more general case Wfbeing a convex polygon, it means that any poitatirzdble with

controls taking values in this polygon, can alsattained with controls taking values only on
the vertices ofJ. This has been calldsng-bang principle.

1.4.3. Invariant sets

Invariant sets are well known in the theory of dynamical systeriibey also play an
important role for control systems. The fundamer#ference in both cases is that in
dynamical systems the starting poirt (@etermines uniquely the whole past and future

trajectory x { ), while for control systems there is a whole setr@fkectories passing through a
given x (0). This immediately induces two ways to apply angpearty to control systems. We

denote these two possibilities Byong, if the property applies to all admissible tragects,
and byweak if the property applies to some trajectories €att one).
We refer to autonomous control system of the type

x=f x,u), ullu , (1.4.11)

wheref satisfies the conditions of the Theorem 1.4.1.

Definition 1.4.1 Let S be a subset of the state spdde The set is said to bstrongly
invariant for a given control system, if for every, S, all admissible trajectoriex t ()

through x(0) = x, remain inSfor all future,

x@0)OS implies x(t)dOS forallt=0 (1.4.12)

Definition 1.4.2 Let Sbe a subset of the state spateThe set is said to beeakly invariant
for a given control system, if for every, S there exists an admissible trajectory \ith

x(0) = x,, remaining inSfor all future times.

In other words: starting at any, in S we can, by choosing a suitable admissible control
make X { ) remain inS forever. For control systems, for which the aiddle setA(t, x, 5

compact, and for closed se® this definition is equivalent to ask that theensection
A, x,) n S#0 for everyt= Q

The case that the s8tin the above definitions is a single point is afitcular importance.
Strongly invariant points appear only rarely in applications. They can dieddixed points.
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The weakly invariant points are usually calledest points. For the system of type (1.4.11)
they are the pointg, such that the set

{uOuU | f(x,,u)=0} (1.4.13)

is not empty. If that is the case, we just neeadthloose one such solution of (1.4.13) as
constant control(t) , getting x =0and remaining at the rest point forever.

To find the location of the rest points is in marages the first step for analyzing the behavior
of a control system.

1.4.4 Stability of invariant sets

The stability properties of invariant sets are algl known from the theory of dynamical
systems. Again, they can be applied to controlesgstin both a strong and a weak form.
For a sef§, aneighborhood V of Scan be understood in a topological sense that

closure 0% O interior ofV.

Definition 1.4.3 Let Sbe a bounded strongly invariant set. Tis8a calledstrongly stable if,
given any neighborhooW of § there exists a neighborhodd of S such that ifx, is in W,

then the forward reachable ft (x,) OV .

It follows that, under these conditions, the atidie setA(t, x,) OV for everyt> Q In less
precise terms: starting sufficiently nearany trajectory will always remain ne@ar

Definition 1.4.4 Let S be a bounded weakly invariant set. Ti®ris calledweakly stable if,
given any neighborhooW of S there exists a neighborho®d of S such that ifx, is in W,

then there exists an admissible trajectary thgugh x(0) = x,, remaining inV for all future
timest > Q

In less precise terms: starting at any point sigfitty nearS, we can remain (if we wish) near
Sforever.

Definition 1.4.5 Let S be a bounded strongly invariant set. Th&ris called strongly
asymptotically stable if it is strongly stable and there exists a nemhloodW of S such that
for any admissible trajectory t (gtarting atx(0) = x,,

!im distance(x(t),S)= 0
Definition 1.4.6 Let S be a bounded weakly invariant set. Th&nis called weakly

asymptotically stable if it is weakly stable and there exists a neighlood W of S such that
for any x, OW , there exists an admissible trajectory gtarting atx(0) = x,, with

!im distance(x(t),S)= 0

Definition 1.4.7 Let S be a bounded strongly invariant set. Ti&is calledstrongly finite
stable if it is strongly stable and there exists a nemiiood W of S such that for any
admissible trajectory t ( ¥tarting atx(0) = x,,
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x(t)OJS for some finitet > 0.

Definition 1.4.8 Let Sbe a bounded weakly invariant set. TI8s calledweakly finite stable
if it is weakly stable and there exists a neighbodhW of S such that for any, W , there

exists an admissible trajectoryt (S)arting atx(0) = x,, such that

x(t)OJS for some finitet > 0

The finite type of stability does not occur in tineory of dynamical systems, since it is ruled
out by the uniqueness of a trajectory through a&miinvariant pointx,. Here, in control

systems, it is possible and indicates an even highgree of stability than the asymptotic
stability.

1.4.5 Attractorsand repellers

We consider control system of the type (1.4.11).

Definition 1.4.9 A bounded se§is called astrong attractor, if it has a neighborhood such
that x, OV implies

!im distance(x(t),S)= 0
for every admissible trajectory t (sStarting atx(0) = x,.

Definition 1.4.10 A bounded se$®is called aveak attractor, if it has a neighborhood such
that x, OV implies

!im distance(x(t),S)= 0
for some admissible trajectoryt (Starting atx(0) = X, .

An even stronger version of attraction may reqtheetrajectories not only to approashbut
actually to enter this set. We call tlaigsorption.

Definition 1.4.11 A bounded seSis called astrong repéller, if it has two neighborhoodg
andW, such thatx, OV but not inSimplies that for every admissible trajectoxyt étarting

at x(0) = x, there is @” > Gsuch that

xt)os forallt>0
and

x(t) OW forall t >t".

Definition 1.4.12 A bounded se§ is called aweak repéller, if it has two neighborhoodg
and W, such thatx, 0V but not inS implies that there exists an admissible trajectefty)

starting atx(0) = x, and at” > Osuch that

xt)ds forallt>0
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and

x(t) OW for all t >t".

1.4.6 Attracting, repelling and saddle holding sets

In some way, holding sets are for control systenmatwcritical points are for dynamical
systems. We can therefore expect them to also dbevavior of attractors, repellers and
saddles. We can strengthen the attracting propertye absorbing one. Let us look about the
invariance and stability properties of the holdgsgs.

Proposition 1.4.1 Every holding set is forward weakly invariant.
Proposition 1.4.2 If a holding set is weakly absorbing, then itasdards strongly invariant.

Repelling holding sets are not exactly the oppasitattracting ones. They are unstable, but
they do not seem to have otherwise interestingeptigs.

The typical saddle-behavior of critical points gihdmical systems consists in the existence
of some trajectories tending to the saddle poird aome going away from it. Similar
behavior for control systems can be defined inoteiways.

Example 1.4.1 (Strongly attracting holding set)
Let us retake the example

X, ==X +U, X, ==2%, +u, |u<1 (1.4.14)

The extreme rest pointﬂ,%) and (—l—%), and the whole set of rest points is the line

segment with these end-points. The lunette detewminby the trajectories going from each of
the extreme rest points to the other, is a forviavdriant set. The holding set from the origin
is the interior of this lunette. Besides this, thare actually only two more holding sets: the
two extreme rest pointsg t (9an stay indefinitely, but once it goes away iarecan come

back.

Ey

!/Z

X /
AR

The best way to imagine this holding set being geig is as follows. Any point reachable
from the origin can be reached in a time optimay wath bang-bang control u(t) =+ 1 with

at most one switching point. Hence we can stathatorigin with eithemu=1 or u=-1, and,
after an arbitrary time, switch to the oppositetooinand keep it until the end. This holding
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set is strongly attracting. But it is not stronglysorbing, since there are nearby trajectories,
for example the two extreme rest points, neverrergehe holding set.

Example 1.4.2 (Saddle holding set)
Let us take the system

X, ==X +U, X, =X, +U, u<1,

with eigenvalues 1 and -1.Without control thera saddle point at the origin. For+1 there
Is a rest point at (1,-1), and for-1 there is a rest point at (-1,1). The pointsthef line
segment of these end-points are all rest pointsvébues ofu inbetween 1 and -1. The
horizontal component of the motion is an attractérthe origin or corresponding rest point,
while the vertical component of the motion is aulsn by the origin or rest point.

X

RaNa

Observing how the trajectories of this system aecdbed, and in particular their relation
with the extreme trajectories (far=+1), it is easy to recognize that the interior of sygare
of vertices ¢ 1+1) is the holding set from the origin. This holdisgf is a sink-source saddle:

trajectories enter on the two sides and leave endp and bottom.

1.4.7 Periodic orbits

The problem of periodic solutions for control systeis basically trivial.

In every non-empty holding set there is at least pariodic orbit, as we are able to "come
back" to any starting point in positive time. Excepdegenerate cases (when the holding set
Is a single isolated periodic orbit) there areewd, infinitely many distinct periodic orbits in
any holding set. On the other hand, any periodiitas necessary (part of) a holding set.
Hence the holding sets determine the periodic ®dmnd conversely.

It is often the case that a dynamical system hasdated periodic trajectory. Converting this
dynamical system into a control system, the sipgleodic trajectory may then "expand" into
a "tube" (or "ring") of periodic trajectories, ssacwe may be able to produce small
perturbations of the original trajectory and stibme back to the starting point. It is
interesting to observe that such a tube of periodiits can be a holding set without any rest
points.

Examplel.4.3 (Sable cycle)
Consider in polar coordinatep @ ,, )

p=p-p°, 6=1.
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This dynamical system has an unstable critical tpatithe origin and the stable orkpt=1.
Converting into a control system

p=p-p*+u, 6=1, |u(t)|S%,

we find that the unstable origin becomes an unstablding set (of radius approximately
1/5), while the periodic orbit widens to a ringf(approximate width 2/5).
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Chapter 2

Global optimal methods

2.1 The Hamilton-Jacobi theory

2.1.1 Introduction

In this chapter will be considered controlled sygstewhich are continues time, finite
dimensional dynamical systems with initial stagein initial time t,,.

Let the model of the controlled plant is describgdhe differential equation
X(t) = f (t,x(t),u(t)) (2.1.1)

where x=(x,....x,)" OR" is the state vector of the system;(u,,...,u,)0U OQ™ is the

control vector,U is a given set of admissible piecewise continugmti functions to the
system;t0T is the time ,T =[t,,t, ]is the time interval of the system’s functioning; is

continuously differentiable vector-function,
f(t,x,u) =(f,t,xu),..f txu)"
and
f(t,x,u):TxR"xU - R".

Here R" is n-dimensional Euclidian space. The boundary condifar the equation (2.1.1)
IS

X(t,) = X, (2.1.2)

and expresses that the initial state is given &nawn initial time. The final time is
determined as the moment when the system reachesm setl D{(t,x)| t>t,,xOR"}, of

admissible final events, i.e.
(t,,x(t,)or (2.1.3)

Let us define a set of admissible procesBé€s, x, as & set of triadd = (t, ,x(Qlu O()where

x(OR" is continuous and piecewise differentiable fimttand u(l)JU , satisfying eq.
(2.1.1)-(2.1.3). On this set we define a perforneaimclex| ¢l )to be minimized as the sum of
an integral type term with a term which is a fuantbf the final event

1(d) = j £Ot, (1), u®)dt + F(t, , x(t,)) (2.1.4)
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where f°{xu) and F(t,,x) are given continuously differentiable functionsheT

performance index depends on the initial statethennitial and final times and on the whole
time history of the state and the control variaples | (t,,t;,X,,x(iu Q).

Problem 2.1.1 (Optimal control problem)
Determine a triadd” = (t;,x ()Lu" () such that

1(d")= min I(d). (2.1.5)

dOD (tg, %)

2.1.2 Global sufficient conditions
Let denote withg(t;t,,x, U [{))he solution at timeof equations (2.1.1)-(2.1.2).

Definition 2.1.1 An admissible control relative to(t,, X, ) for the system (2.1.1) and the $et
is the controlu()TU O Q™ defined on the intervdt,,t, ,It; =2t, such that

(t,, @t ty, %, u) Or .

Definition 2.1.2 An optimal control u®((] relative to (t,,x, ) for the system (2.1.1),
performance index (2.1.4) and the detis an admissible control on the intenja),t],
t? >t, such that

L (7, (G, X, U (D), U’ (D) < | (t; @Gy, %o, u(D), u(D) .

Within the frame of optimal control theory a furmti built up from the system to be
controlled and the integral part of the performaagterion plays a fundamental role. This is
the Hamiltonian function.

Definition 2.1.3 TheHamiltonian function relative to the system (2.1.1) and the performance
index (2.1.4) is the function

H(t,x,u,A)=fo@t,xu)+A"f (t,xu) (2.1.5)
where A0OR".

Definition 2.1.4 The Hamiltonian function is said to begular if, as a function ofi, it admits
for eacht >t,, x, A a unique absolute minimunf, t X A ,, e.

H @, xup ¢,x,1),4) <H t,xuA), Ouzu)(txA), OxOR", Ot=t, DAOR" (2.1.6)

Definition 2.1.5 Let the Hamiltonian function be regular. The fuowtu? , which verifies the
equation (2.1.6) is said to be tHeminimizing control.

For regular Hamiltonian function, the partial diéatial equation
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Vv (t,2) SH(ZUC (t’Z'(GV(t,z)), (6V(t,z)),):o
ot 0z

is the Hamiltonian-Jacobi equation (HJE).
The following theorem gives a sufficient conditiohoptimality.

(2.1.7)

Theorem 2.1.1 Let the Hamiltonian function (2.1.5) be reguladar! defined on the interval
[t,,t7], t7 =t,, be an admissible control relative to tfig x, , sd that(t?,x°(t?))0Or , where

x° (=@ (C1,,%,,u° (D) . LetV be a solution of eq. (2.1.7) such that:

(1) it is continuously differentiable;
(i) V(t,2=F(,2), O¢20r;

(i) w0 =0 O] ). tstst.

Then it follows that

)] u’(ly is an optimal control relative t(,,x, ;)
) | (to X0, X° (O, U°(0) = Vy (£, %) -

Theorem 2.1.1 supplies only sufficient optimaligndition. For instance, if point (iii) fails to
hold corresponding to a certain solution of the HdE cannot claim that the control at hand
is not optimal. This theorem provides a mean ofckhlng only whether a given control is
optimal: however it can be restated to allow uddtermine an optimal control. This is shown
in the following lemma.

Corollary 2.1.1 Let the Hamilton function (2.1.5) be regular avidbe a solution of the HIJE
(2.1.7) such that:

(1) it is continuously differentiable;

(i) V(t,2)=F(,2, 0O 20r.
If the equation

(1) = (6, X(),u° ¢, X(0), [‘N(t 2y

2= x(t))) , X(ty) =X,

admits a solutiorx, such that, for some>t, (7,x(r))Ur , then

Y (t 2).,

u®(t) = up (t, %, (1), I

z- xc(t))

is an optimal control relative t@,,x, .)
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2.2 The LQR problem

2.2.1 Introduction

The linear quadratic regulator (LQR) problem is mhest celebrated optimal control problem.
It refers to a linear system and a quadratic perémce index according to the following
statement

Problem 2.2.1 For the system
X(t) = A(t)x(t) + B(t)u(t)

2.2.1
i) =% &2

wheret, and x, are given, find a control which minimizes the penfiance index
J= %{ [Ix OQ)X(®) +u (HRBU(D)]dt + X (1) S(Y} - (2.2.2)

The final timet, is given, while no constraints are imposed on fthal state x(t;). In
equations. (2.2.1), (2.2.2XD, B(), Q(), R() are continuously differentiable functions and
Q) =Q'(t)=0, R(t)=R'(t)>0, for Otd[t,,t; ], S=S=0.

LQR problem can arise in a fairly spontaneous v@@onsider for example a dynamic system
2 and denote byx, [{)ts nominal state response one wishes to obtah.ul.(J be the
corresponding input when the system exhibits timeseinal conditions> =% . Uncertainties
in the system description and disturbances actingthe system lead to a closed loop
configuration. The controlleZ, we have to design contains a syst&nwith input the
deviation & of the actual state fronx, that supplies the correctiodu to u, in order to
make ox small. There is no requirement for large correidu and the objective for the
desired controller can be stated in terms of logkiar the minimization of a quadratic

performance index like the one given in eq. (2.2T&erefore, if the deviationd& and du are
small andZ is described to bex= f t &,u, With f sufficiently regular, the effect odx and

Au can be evaluated through the linear equation

_ of (t,x,u,(t)) g B of (t, x, (t),u)
oX " ou

Problem 2.2.1 is a particular case of Problem 2ahd can be approached via the Hamilton-

Jacobi theory. According to circumstances, LQR [awbcan be stated on a finite or infinite
time interval.

X

U=ty (t) a.

2.2.2 Finite control horizon
The following result holds for the LQR problem oefinite horizon

Theorem 2.2.1 The problem 2.2.1 admits a solution for any ihisiate X, and for any finite
control interval[t,,t, ] The solution is given by the control law
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ud(t,x) = -R7*(t)B'(t)P(t)X, (2.2.3)
where the matri® solves the differential Riccati equation (DRE)
P(t) = —P(t) A(t) - A'(t)P(t) + P(t) B(t)R™ (t) B'(t) P(t) - Q(t) (2.2.4)
with boundary condition
P(t,)=S. (2.2.5)

The minimal value of the performance index is
. 1,
7t %) = 5% "Plto) %

Theorem 2.2.1 gives the solution to Problem 2.8.1erms of optimal control law. If the

optimal controlu® is necessary for a given initial state, it is &effl to find a solutiorx® of
the equation

x=(A-BR™'B'P)x with x(t,) = X,,

that computes the response of the optimal closegd &ystem (2.2.1),(2.2.3) and the optimal
control

u®(t) =-R7(t)B'(t) P(t)x°(t).

Remark 2.2.1 The value of theoefficient in front of the performance index (2.2.1) is not
important. It can be seen as a scale factor only.

Remark 2.2.2 Theorem 2.2.1 states that the solution of the L@®Iem isunique.

Remark 2.2.3 A more general statement of the LQR problem caroltt@ined by adding
linear functions of the control and/or state variables ithe performance index, which thus
becomes

t
j[x‘ (OQ(t)x(t) +u'(t) R(t)u(t) + 2h'(t) x(t) + 2K' () u(t)]dt +%[x' (t;)SX(t, ) +2m'x(t, )],

fo

1

J==
2

whereQ, R, S are as in Problem 2.2.1 amg k are vectors of continuously differentiable
functions. The resulting optimal control admits &son for all initial statesx, and for all

finite control intervaldt,,t, ] The solution is given by the control law

ug (x,t) = =R(t{ B ([ Pt)x+Wt)] + K1)},

whereP is the solution of (2.2.4), (2.2.5), while is the solution of the linear differential
equation

w=—-(A=BR'B'P)w+PBR'k—-h  with w(t;)=m.
The optimal value of the performance index is
1 1
JO(Xo’to) ZEXO P(to)xo +W(t0)xo +V(t0) 1

wherev is the solution of the linear differential equatio
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v=%agw+m¢r%aw+k) with v(t,) =0.

Remark 2.2.4 A different extension of the LQR problem consists in adding the term
2X'(t)Z(t)u(t) to the integral part of the performance index, igh2 is a continuously

differentiable function. Notice that the presentéhcs new term may substantially modify the
nature of the problem, as the assumptions in Pmol®e2.1 are no longer sufficient to
guarantee the existence of a solution. In fact, let

vi=u+R'Z'x
so that the system description and the performantex become
x=(A-BR™'Z")x+Bv:= AXx+Bv
XQX+2X'ZUu+U'Ru=x(Q-ZR'Z")x+V'Rv:i=X'Q,X+V'Rv.

Thus, the original problem is transformed into &tomary problem where, however, the
matrix Q, might no longer be positive semidefinite. Henée éxistence of the solution of

the DRE for arbitrary finite intervals is not ensdrunless a further assumption of the kind

Z
Rzl 0 R>0
Z' R
is added. Anyway, if the DRE
P=-PA -A'P+PBR'B'P-Q, with P(t,)=S

admits a solution over the interv),t, also whenQ, is not positive semidefinite, then the
control law
ug (x,t) =—R™(O[B')P(t) + Z'(t)]x
is optimal.
Remark 2.2.5 The assumptions on thegn of Q and S are conservative. When these

assumptions are not met with, there are cases wheRE still admits a solution and cases
where the solution fails to exists over the whaleeqg finite interval.

Remark 2.2.6 (Tracking problem) A third extension of the LQR problem calls fordatty to
the controlled system an output

y(t) =C(t)x(t)
and considering the performance index

J =§ [y ® - #IQOLY® ~ (1)] +u'(t)F<t)L(t)}dt+§[y'(tf)—u'(tf)]é[y(tf)—u(tf)].

HereC, Q = Q'> 0 and R=R'>0 are continuously differentiable functionS=S'>0 and 7

is a vector of given continuous functions. The &@nthus to make some linear combinations
of the state variables behave in the way spechied: . This optimal control problem admits

a solution for each finite intervdt,,t, , Initial statex, { )and x4 (). The solution is given by
the control law
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ud(x,t) = =R (t) B'(1)[P(t)x + W(1)], (2.2.6)
whereP is the solution of the DRE
P=-PA-AP+PBR'B'P-C'QC  with P(t,)=C'(t,)SC(t,), (2.2.7)
while w is the solution of the differential equation
W=—-(A-BR'B'P)w+C'Qu  with w(t,)=-C'(t,)Su(t, ). (2.2.8)

The optimal value of the performance index is

1,
J°(Xorto) ZEXO P(t) X, +W(ty) %, +V(t,) (2.2.9)
wherev is the solution of the differential equation

\'/=%(W’BR‘1B'W—,U'(§,L1) with V(tf)=%,u'(tf)é/1(tf) (2.2.10)

Remark 2.2.7 The tracking problem can be set also for systemshndrenot strictly proper,
that is systems where the output variable is given

y(t) =CO)x(t) + D(t)u(t)

whereC andD are matrices of continuously differentiable funonos. The performance index
IS

= 2 [ ® - OO0 - O]+ U OROU D)t

where both matricesﬁ and R are symmetric, positive definite, continuouslyfeiéntiable
and u is a given continuous function. The adopted peréorce index is purely integral. This

choice simplifies the subsequent discussion withsulistantially altering the nature of the
problem. The solution is given in terms of the cohi@w

ug (xt) = =R} D'(©Q()C(L) + B (1) P(t)]x+ B'(t)w(§ K( 1)}
where R:=D'QD + R, k:=-D'Qu, P solves the DRE
P=-PA -A'P+PBR'B'P-Q with P(t,)=0
andw is the solution of the equation
w=-(A -BR™'B'P)w+PBR'k-h with w(t,) = 0.
In these two differential equations
Q:=C'(Q-QDR™D'Q)C, A =A-BR'D'QC, h:=C'Q(DR'D'Q-1)u.

The optimal value of the performance index is
0 _1, 1tf A\
3°(%) =5 %" Plt) %o + W (to) % +V(to) + [ 1 ()Qu(t)ct
to

Wherev solves the equation
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':%(B'W+ KR BWHK)  with v(t,) =0.

Remark 2.2.8 Frequently it is also convenient to prevent thetfderivative of the control
variable from taking on high values. This requiraetsecan be cast into the problem

formulation by adding to the integral part of therformance index the term(t)lit ay ()If

the matrixR is positive definite and continuously different@pbthe problem can be brought
back to a standard LQR problem by viewingas a further state variable satisfying the
equation

u(t) = v(t)

and lettingv be a new control variable. Thus, the given problsrequivalent to the LQR
problem defined on the system

X(t) = AQ)R(t) + Bv(t)

and the performance criterion

3 = [[R QM) +v () R(B)]dt + X (t, ) (),

where  %(0)=[x() u(], A(t):{A“) B“)},.é;zm,.é(o::{Q(” 0 }

0 0 0 R()
S:= )
0 0

The solution is given by the control law
V0 =-R(t)B'P(t)X:= K, (t)x+K,(t)u,
P being the solution of the DRE
P=-PA-AP+PBR'B'P-Q with P(t,)=S.

The resulting controller is no longer a purely &igac system as in the standard LQR context
but rather a dynamic system the order of which kgl number of the control variables.

Remark 2.2.9 The LQR problem can be stated also igahastic framework by allowing
both the initial state and the input to the systerbe uncertain. More precisely, assume that
the controlled system is described by

X(t) = At x(t) + B(u(t) + v(t)
X(to) =%, '
wherev is a zero mean Gaussian white noise with intensignd x, is a Gaussian random

variable with expected valug, and variance matrixl,. Furthermore, it is assumed thgt
is independent frona. The performance index to be minimized is

3, = | [[X©QMX® + rOROUOId + X ¢, ), ) |,
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whereQ=>=0, S>0 and R> Q If the state can be measured then the solutigheoproblem

is constructed by the same control law which isrogl for its deterministic version (2.2.3)-
(2.2.5). In fact, corresponding to the control lax,t) = K(t)x the value taken by the index

Ji is

I SR (G) (Mg + Xp%y') + TVPK (t)dt] .

to
Matrix P, is the solution of the Lyapunov differential edoat
P-P(A+BK)-(A+BK)'P-(Q+K'RK) with P(t,)=S.

If V=0 andll, = OthenX, P, (t,)%, =X, P(t,)X,, whereP is the solution of (2.2.4),(2.2.5).
Since X, and t, are both arbitrary, it follows tha® (t) = P(t), t[t,,t;]. Obviously
P (0)=P()] when K=-R™B'P so that J_ is minimized by this choice oK. Indeed,

tr[P Al =tr[PA] for all A=A">0 (or tr[(B, —P)A]=0) since the eigenvalues of the product
of two positive semidefinite matrices are real andnegative.

2.2.3 Infinite control horizon

By no means can the linear-quadratic optimal cdrgroblem over annfinite horizon be
viewed as a trivial extension of the problem ovéinde horizon, which has been considered
to some extent in the previous section. As a maftéaict, the assumption which have proved
to be sufficient in the later case are no longehsu the former one.

Problem 2.2.1 will not be discussed for.,, and S= Q This particular choice fo6 is

justified mainly by the fact that in the most siftgant class of LQ problems over an infinite
horizon, the state asymptotically tends to zero anabnintegral term in the performance
index would be useless. The LQ problem over amit&fihorizon is therefore stated in the
following way.

Problem 2.2.2. (Linear-quadratic problem over an infinite horizon)
Given the system

x(t) = A(t)x(t) + B(t)u(t)

X(to) = %

where x, andt, are specified find a control which minimizes thefprmance index

(2.2.11)

J= % [Ix QXM +u ®REU()]dt

The final state is free and\ [ (B(),Q(),R() are continuously differentiable functions;
further QO =Q' (>0, O t=t,

A solution of this problem is provided by the fallmg theorem.
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Theorem 2.2.2 Let the system (2.2.11) be controllable for eaeht,. Then Problem 2.2.2
admits a solution for each initial staxg which is specified by the control low
ud(x,t) = -R™(t)B'(t) P(t)x (2.2.12)

where
P(t) = lim P(t,t,), (2.2.13)
P(L1;) being the solution of the differential Riccati etjon

P=-PA-AP+PBR'B'P-Q (2.2.14)

satisfying the boundary condition
P(t;,t;)=0, t,<t,; <co. (2.2.15)
Further, the optimal value of the performance ingex

3°(x,1,) =%x0'|5(t0)x0 (2.2.16)

2.2.4 The optimal regulator

Due to the importance of the results and the nurabapplications, the LQ problem over an
infinite horizon when both the system and the pemtnce index are time-invariant, that is
when A, B, Q, R are constant matrices is parti¢ylareaningful. The resulting problem is
usually referred to us theptimal regulator problem and apparently is a special case of the
previously considered LQ problem over an infinitegihon. However, it is worth discussing it
in detail since independence of data from time iesph substantial simplification of the
relevant results, making their use extremely simphais the problem at hand is

Problem 2.2.3. (Optimal regulator problem).
For the time-invariant system

x(t) = AX(t) + Bu(t), (2.2.17)
X(0) =%,

where X, is given, find a control that minimizes the penfiance index
3 =3 [[X QU)X +u' O R u(t)]dt (2.2.18)
0

The final set is unconstrained a@=Q’' = , R=R' >0.

Observe that, thanks to time-invariance, the ihtilme has been set to 0 without loss of
generality. The following result holds for the pledn above.

Theorem 2.2.3 Let the pair A B )be reachable. Then the Problem (2.2.3.) admitdwdien
for eachx,. The solution is specified by the control low
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ul (x) =-R™'B'Px (2.2.19)

where P =P'> 0 solves the algebraic Riccati equation (ARE)
PA+ AP-PBR'B'P+Q=0 (2.2.20)
and is such that
P = lim P(tt),

§ >0

P(L1,) being the solution of the differential Riccati etjon P=—-PA-AP+ PBR'B'P-Q
with boundary conditiorP(t, ,t;) = OFurther, the optimal value of the performancesints

1 _
J°(%,) :Exo'Px0 (2.2.21)

Remark 2.2.11 (Control in the neighborhood of an equilibrium point)

From a particular point of view the importance dfetoptimal regulator problem is
considerably enhanced by the discussion at thenbeg of this chapter. Indeed equation
(2.2.17.) can be seen as resulting from the limaidn of the controlled system about an

equilibrium state, say, . For this system the staig is desired to be close to such a point,
without requiring, however, large deviations of tentrol variabless from the valuer,
which, in nominal conditions, producé€s In this perspectivex andu are with reference to

the quoted equation, the state and control devigticespectively, and the meaning of the
performance index is obvious. Further, should thaetol low (2.2.19) force the state of
system (2.2.17) to tend to O corresponding to ajal state, than it would be possible to
conclude that the system has besabilized in the neighborhood of the considered
equilibrium.

Theorem 2.2.4 Assume that the paifA, B) is reachable and Ié?, be any element of the set

P. ThenP,-P=> 0

Lemma 2.2.1 Let Q be a symmetric positive semidefinite matrix abdand C, two distinct
factorizations of it. LetA be a square matrix with the same dimensiorQasrhen the
unobservable subspace of the pg# C,) coincides with the unobservable subspace of the

pair (A,C,).

Theorem 2.2.5 Problem 2.2.3 admits a solution for each initilte x,if and only if the
observable but unreachable part or the trifeB,Q is gsymptotically stable.

Remark 2.2.12 (Decomposition of the ARE)
If the triple (A,B,C) is notminimal, the ARE to be taken into account simplifies a Iat

fact, the canonical decomposition of the tripleuogls a decomposition of the equation as
well, thus enabling us to set some parts of thetiewl to zero. More precisely, assume tAat
B andC are already in canonical form, namely
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A A A A B,
0 0 B
A= A AR c=[o ¢, 0 C,]
0 0 A A 0
0 0 0 A 0
and partition matriP according to letting
Pl PZ P3 P4
P. PZI I:)5 PG I:)7
IR RR R
P4' I:)7I PQI I:)10

From the differential equations for tHe’s it follows that P (Gt,) =0, i = 1,234,689 while
the remaining blocks solve the three equations

Ps = —P5A5 - AS'F’5 + F’SBZR_lBZ'F’5 —Cl'Cl,
P7 = _P7A3 - (Asl_PsBzR_lel)P7 - P5A\s _CllCZ

Plo = _P10A9 _Aglplo - P7IA5 _ABIP7 + P7IBzR_lelp7 _C2IC2

which sequentially can be managed. The only noatirequation is the first one, which
already is the Riccati equation for Problem 22atre¢ to the reachable and observable part
of the triple (A, B,C) . The two remaining equations are linear. Thus

0O 0 0 O

o0 R 0P

0O 0 0 O

0 P 0 R
where Pi, i= 5710 are the limiting values (a$, — =) of the solutions of the above
equations with boundary conditionB (t,,t;) = . O’hese matrices are solutions of the

algebraic equations which are obtained from thieihtial ones by setting the derivatives to

zero and substituting foP, and P, their limiting values. The next section will shakat Ps
is such thatA, - B,R™B,'Ps is stable (all its eigenvalues have negative real partsjs Tawt

implies that two linear algebraic equations whigtedmine P; and P admit a unique
solution. Indeed both of them are of the fodk + GX + H =0 with F andG stable. Thus
the solution of Problem 2.2.3 (when it exists liglato any initial state) can be found by first

computing Ps, solution of the ARE (in principal, by exploitinfheorem 2.2.4 , actually by
making reference to the result in Chapter 4) anbssguently determining the (unique)

solutionsP, and P, of the remaining two linear equations.
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Finally, if the given triple (A,B,C) is not in canonical form (resulting from a charafe
variables defined by a nonsingular maty the solution of the problem relies on
P, :=T'PT. The check of this claim is straightforward.

Remark 2.2.13 (Tracking problem over an infinite horizon) The optimal tracking problem in
Remark 2.2.6 with reference to a finite controkmtl can be stated also for an infinite time
horizon. This extension is particularly easy if theblem at hand is time-invariant (the
matrices which define both the systems and theopednce index are constant) and the
signal to be tracked is the output of a linear timariant system. Under these circumstances
the optimal control problem is specified by

%(t) = Ax(t) + Bu(t),
y(t) =Cx(t)
X(0) = X,

and
J= T{[ y'(t) - 4 (DIQY () — a(D)] +u' () Ru( )} ot

where 1 is an output of the dynamic system

9(t) = FI(t),
H(t) = HI (),
9(0) =3,.

As in Remark 2.2.6@ :é'> OFurther, due to self-explanatory motivations, plag (F,G)
is assumed to be observable so thatjfand &, are generic though given, asymptotic

stability of F must be required. Under these circumstancesnivtiglifficult to verify that the
solution of the problem exists for eagh andJ, if and only if the observable but unreachable

part of the triple(A,B,C )is asymptotically stable. The solution can be deduby noticing

that the problem at hand can be given the formroblem 2.2.3 provided 6that the new
system

E=WE&+Wu

and the performance index
J= T({'@{+ u'Ru)dt
0
are considered, where
ol o ) el s

Thus the optimal control low is
Uz (x,t) =—R™'B'(Rx+PJ(1))

where P solves the ARE
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0=PA+AP-PBR'B'P+C'QC

and is such that
R =lim Pt ), P(Lt,)

being the solution of the DRE

P=-PA-AP+PBR'B'P-C'QC
satisfying the boundary conditioR(t, ,t,) = , Qhile P, solves the linear equation

0=PF +(A-BR'B'R)P-C'QH .
Finally, the optimal value of the performance indkex

(%, 59) = %" PXo + 29, P, %, +9,' P,

where P, is the solution of the Lyapunov equation

0=PF +F'P-P,'BR'B'P,+H'QH .

Remark 2.2.14 (Penalties of the control derivatives) The discussion in Remark 2.2.8 is steel
valid in the casé, = even if some care must be paid to existence o$ohgion. With the

notation adopted, lef\,, and f\m be the spectra of the unreachable parts of ths A B)

and (A B), respectively. Then\, =f\nr. In fact, if T, is a nonsingular matrix which

performs the canonical decomposition of the g&rB intp the reachable and unreachable
parts, namely a matrix such that

Ay
then A, is the spectrum of\, . By letting

.~ [T, O
T =

TrATr_1:|:Aior Azr} T,B{B(ﬂ, (A, ,B,) =reachable,

we obtain
. R A.I.r Azr Blr o O
TAT'=l0 A, 0| TB=0
0 0 O |

since the spectrum o4, is a subset of\nr . It is not difficult to verify that

[3 5] e

from which 7\m =/, . Indeed, if such a pair is not reachable, it fochat,

so thatA,, OA

nr?

38



I N

These equations imply that=0 and, the pai(A,,B, ) should not be reachable.

Let now A, and 7\no be the spectra of the unobservable parts of the pA,C) and (A,é),
respectively, whereC'C =(§:: diag[C'C,D'D ,]C and D being factorizations o and R,
respectively. ThenA Df\no. In fact, let T, be a nonsingular matrix which performs the

canonical decomposition of the pa{A,C into the observable and unobservable parts,
namely a matrix such that

Ao
Ao

Then, A, is the spectrum of,; . If

_ 0 _
T°AT°1{ AJ’ CT,*=[Cc, 0, (A,,C,)=0bservable.

we obtain
0 B
T AT = 2 A, Blo &fiz|C0 00
o o 0 0 20 |1 o 0 0D
0 0 0

so thatA , O 7\n0 since the spectrum o4, is a subset of\no.

Finally, denote byA . and f\nm the spectra of the unreachable but observable péarthe

triples (A,B,C) and (A, é,é). From the preceding discussion it can be concluihed
/A\nro D /\nro *
If a solution of Problem 2.2.3 defined by the quende (A B Q ,R) exists for each initial state

x(0), i.e. all elements of\ ,, lie in the open left half-plane, then a solutidrPooblem 2.2.3,
defined by the quadrupIeA,é,Q,f{ (recall thatR is the weighting matrix fou in the
performance index), exists for each initial stEa('eéO) u'(O)]', since, necessarily, all elements

of f\nm lie in the open left half-plane.
In the special case whemank(B i9 maximum and equal to the number of columns, the

optimal regulator can be given a form differentnfraghe one which, referring to a finite
control interval can anyhow be adopted also in phesent context, the only significant

difference being the time-invariance of the syst8ince B'B is nonsingular, from the system
equationx = Ax + Bu it follows that

u=(B'B)™"B'(x— AX).
On the other hand, the solution of Problem 2.2 glies thatu = K, x + K u so that
u= KXX+ Kxx

whereK, =K, (B'B)™B' andK =K, -K,(B'B)™'B'A.
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By performing the integration of the equation forbetween the initial time O and a generic
instantt we obtain

u(t) = K, (x(t) - x(0)) +jr2x(r)dr+u(0) .

This is the control low which can be interpretechageneralization of the PI controller to the
multiplicative case.

Remark 2.2.15 (Performance evaluation of the frequency-domain)

The synthesis procedure based on the solution @fl&n 2.2.3 can easily be exploited to
account for requirements (more naturally) expressede frequency domain, as, for instance,
those calling for a weak dependence of some vasabf interest on others in a specified
frequency range. In other words, the presence ofmd@ic components of some given
frequencies in some state and/or control variaivast be avoided, or, equivalently, suitable
penalties on them must be set. This can be doadaily easy way. Indeed, recall that thanks
to Parceval’s theorem

Tz'(t)z(t)dt -1 Tz~(jw)2(jw)da)
J od

wherez is a time functionZ is its Fourier transform and it has obviously bessumed that
the written expression make sense. Therefore, altygon some harmonic components in the
signal x(t) can be set by looking for the minimization of afpemance index of the form

ziTX~(jw)F;(jw)Fx(jw)X(jw)dw
ﬂ—oo

where F, is a suitable matrix of chapping functioR, is rational and proper (not necessarily

strictly proper) it can be interpreted as the tf@ngunction of a system whit input,
Z(jw) =F (jw)X(jw) is the Fourier transform of the outpmtt @hd the integral ok'z is

the quantity to be evaluated. The usual performandex takes on the following (more
general) form

Ji :%TI[X~(J'w)F{(J'w)FX(J'w)X(J'w)+U~(J'w)FJ(J'w)Fu(J'w)U(jw)]dw

where F, and F, are proper rational matrices. This index has tari@mized subject to
equation (2.2.17). The resulting optimal contrabigem can be tackled by first introducing
two (minimal) realizations of F, and F,. Let the quadruples(A,B,,C,,D, )and

(A,,B,,C,,D,) define such realizations, respectively, and noaé t

31 = [0 QX0+ 26, (OZ,00) + U ORu(D]ch

if X, = [x' zZ, Zz,[ whit x, = A, X, +B,u where

X

A 0 O B
A,=B, A 0] B,=0
0 0 A B,
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and

D,'D, D,'C, 0 0
Q,=|C,'D, C,/C, o |, Z,=| 0 | R,=D,'D,
0 0 C,'C, C,'D,

Thus the problem whit frequency domain requireméats been restated as an LQ problem
over an infinite horizon where a rectangular teempiesent in the performance index. The
results for the optimal regulator problem can bpla@ked provided only that the quadratic

form in u is possible definite, namely if ragR, ¢gquals the number of its columns. Indeed,

the state weighting matrix is positive semidefingmce the form ofJ, implies that
Q. =Q,-Z,R,'Z,'20 (see Remark 2.2.4). Assuming tha}, >0, the solution of the

problem exists for each initial state (0) if and only if (see Theorem 2.2.5) the observable
but unreachable part of the trip{é\,, B,,C,) is asymptotically stable, where

D, C, O
C,=
0 0 C,

is a factorization ofQ,. In conclusion, the problem whit frequency requiests can be
viewed as a customary optimal regulator problerd,ifand F, are such as to verify the above

assumptions on sign and stability. Note that th&ulteng regulator is no longer purely
algebraic. Indeed, the control variabi@epends, through a constant matrix, upon the whole
enlarged state vectax,, so thatu =K, x+ K,z +K, z,. Thus the regulator is a dynamic

system whit stat¢z,' z,']', inputx (the state of the controlled system) and output

Remark 2.2.16 (Stochastic control problem over an infinite horizon)
The discussion in Remark 2.2.9 can be suitably fieatto cover the case of an unbounded
control interval. Corresponding to the (time-inaat) system

X(t) = Ax(t) + Bu(t) +v(t),
x(0) =%,

wherev and x, are as in Remark 2.2.9, reference can be madth&r ehe performance index
J, = E{ j [X (D)Qx(t) +u' () Ru(t)] dt}
0
when v([) =0, or the performance index
l T
J, = Ehim ?J'[x' (t)Qx(t) + u'(t)Ru(t)]dt}
R

when x, = O In both cases the solution, if it exists, is ¢dnted by the control law (2.2.19)
defined in Theorem 2.2.3. In the simple cases wiigye X,X,">0 (performance index)
and V >0 (performance index],,), the solution exists is and only if the unreadaatut
observable part of the tripleA,B,C i% asymptotically stable, whe€is such thalC'C =Q.
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The remaining part of this section is dedicatedstone particular but very important
properties of the optimal control feedback system discussing the potentialities of design
methods based on the minimization of quadraticciesli

2.2.4.1 Stability properties

The stability properties of system (2.2.17),(2.2.1®at is of system
X(t) = (A-BR™B'P)x(t), (2.2.22)

are now analyzed in detail. The fact that the adntaw guarantees a finite value of the
performance index corresponding to any initialestsggests that system (2.2.22) should be
asymptotically stable if every nonzero motion oé thtate isdetected by the performance
index.

Lemma 2.2.2 Let the pare(A,B) be reachable an@) =C'C. Then the matrixP which

satisfies the optimal control law for Problem 2.&3o0sitive definite if and only is the pair
(A,C) is observable.

Theorem 2.2.6 Let Q=C'C and the triple (A,B,C )be minimal. Then the closed loop
system resulting from the solution of Problem 2i2.8symptotically stable.

Theorem 2.2.7 Assume that a solution of Problem 2.2.3 existsefrh initial state. Then the
optimal closed loop system is asymptotically stabéand only is the pailA,Q )s detectable.

Remark 2.2.17 (Existence and stabilizing properties of the optimal regulator) A summary of
the discussion above concerning the existencelandtabilizing properties of the solution of
Problem 2.2.3 is presented in Figure 2.2.26 wheference is made to a canonical
decomposition of the tripl€A,B,C and the notation of Remark 2.2.12 is adopted.heuoyt
the term “stab.” denotes asymptotic stability ane éxistence or inexistence of the solution
has to be meant for an arbitrary initial state.

A, = stab. el =
@ '@

= stab.
= reach. Sy

(4.B)

Zreach.

= Ay = stab. =
A Ay = stab. ‘mﬂ.land 7 fsol.=
§ b d sel. <tab.

Ag = stab, A and{or A; = stab.

Figure 2.2.26: Optimal regulator problem: existeand stabilizing properties of the solution.
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Remark 2.2.18 (Optimal regulation with constant exogenous inputs) The results concerning
the optimal regulator can be exploited when théesgshas to be controlled so as to achieve
asymptotic zero error regulation in the presencentdhown inputs of polynomial type. In the
case of constant signals, the control system isrithesl by

X(t) = Ax(t) + Bu(t) + Md,
y(t) =Cx(t) + Nd, (2.2.23)
X(0) = X,
and a regulator has to be designed so as to gearémt each constant signgl andd and
each initial statex,,

lim(t) =y,

Within this frameworky; is the set point foy, while d accounts for the disturbances acting
on the system input and output. In the preseningethe triple (A,B,C) is minimal, the

number of control variables equals the number ¢futuvariables and the state of the system
is available to the controller. The controller che considered as constructed by two
subsystems: the first one is described by the emuat

() =y, - y(t) (2.2.24)

while the second one has to generate the contr@blau on the basis ot and é in such a

way as to asymptotically stabilize the whole systémdesigning this second system it is
meaningful to ask for small deviations of the st&atd control variables from their steady state
values together with a fast zeroing of the erronc& the first variations of the involved

variables for constant inputs are described by esyst, obtained from equation
(2.2.23),(2.2.24) by settind =0 and y, = 0, namely

() = AX(t) + BAu(t),

oy(t) +Cx(t),

O(t) =-oy(b),

a satisfactory answer is to let the second sulsybte constituted by the solution of Problem
2.2.3 forZ, and a suitable performance index. Thus, chosen

J= f [dy'(1)Q,dy(t) + 5" (1)Q,A¢ () + du'(t) Rau(t)]dt
0
with Q, andR positive definite andQ, positive semidefinite, the optimal control law;itif
exists, will surely be stabilizing, sincg, is observable fronf and given by
A3, (&, 08) = K &+ K, A .

The existence of the solution is guaranteed by réechability of £, namely by the
fulfillment of the condition

B AB AB - A B|J0O B AB ---
n+m=rank( ) =rank( )
0 -CB -CAB -- -C o|I o o -
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which in turn is equivalent to saying that systerfA,B,C,0) does not possess transmission

zeros at the origin (actually invariant zeros, lwseaof the minimality ofX). In fact,
reachability of the pairA B )mplies that in the above equation the rank ofsheond matrix

on the right-hand side be equalro+ n and, in view of the already mentioned minimalify o
>(A,B,C0), that there are transmission zeros at the orifjiand only Ax+Bu=0 and

Cx =0 with x and/oru different from 0. On the other hand,3f A B C, ,0\hich possesses
as many inputs as outputs, has a transmissionlaeated at the origin, then it would follow
in turn entail the existence of a zero eigenvalughie unreachable part &,. Since this

system is observable, we would conclude that natisol exists for Problem 2.2.3 when
stated on such a system. Thus zero error regulatgombe achieved in the presence of
constant inputs only if none of the transmissiogef> A B C 0) is located at the origin.

Remark 2.2.19 (Penalties on the control derivatives) The problem considered in Remarks
2.2.8 and 2.2.14 can be discussed further withreatee to the stability properties of the
solution.

First recall that in view of Theorems 2.2.5 and. 2. % a solution of Problem 2.2.3 stated for
the quadruple(A,B,Q,R )exists for each initial statex (Gand the resulting closed loop

system is asymptotically stable, then the Aet A, must be stable, i.e. all its elements
must have negative real parts. Assuming that #iissssuch, it is possible to claim that the
Problem 2.2.3 stated for the quadrugl&,B,Q,R admits a solution for each initial state
[x(©) u'()] if the setA, is stable. Sincé\,, DA, the setA , is stable if the sef\

is such.
If stability of the resulting closed loop systensha be guaranteed as well, stability of the set

/\ must be checked. To this end, observe thzii[it/\m, then it must be

A e [

Since matrixR is positive definiteD (which is a factorization of it) is square and siagular
without lack of generality, so that these equationply u=0 since C =diag[C,D] and

AUOA,, . Therefore, the sefl\m is stable if the sed\ , is stable.
Notice, that the presence of a penalty term orctimgrol derivative in the performance index
allows one to relax the requirement on the sigitahdeed it appears in matriQ only and

can be positive semidefinite. In this case, majxf chosen of maximal rank, is no longer
square and the above discussion about stabilitheotlosed loop system has to be modified.

In fact, assume as before that the Ag,g is stable in order to guarantee the existencéef t

nro?

solution for each initial state and, as fi\)po, note that the above equations (which amount to

say A Df\no) still imply u=0 if A#0: thus such an eigenvalue is currently stabla jf is

stable. If, on the other hand,= , €those equations becom&+Bu=0, Cx=0. Hence a
transmission zero of systerh ABC, ,05 located at the origin since and u cannot
simultaneously be zero. ThereforeRifis not positive definite, the conclusion can bave
that Problem 2.2.3, stated for the quadru@@eé,é,fz , €gn not admit a stabilizing solution
whenever systeml@ A(B,C, ,0possesses transmission zeros located at the .origin

44



Problem 2.2.4 (Optimal regulator problem with exponential stability) For the time-invariant
system

X(t) = Ax(t) + Bu(t),

(2.2.25)
x(0) =
where X, is given, find a control which minimizes the perfance index
J= j e* [X'(t)Qx(t) +u'(t)Ru(t)]dt . (2.2.26)
0

No constraints are imposed on the final state anthédr Q =Q'>0, R=R'>0, while g is a
given nonnegative real number.

For this problem the following result holds.

Theorem 2.2.8 Let the triple (A,B,Q )be minimal. Then the solution of Problem 2.2.4sei
for each initial statex, and eachr = 0The solution is characterized by the control law

ul, (x)=-R™'B'P,x (2.2.27)
where P, is the symmetric and positive definite solutiortieé algebraic Riccati equation
0=P(A+al)+(A+al)P-PBR'B'P+Q (2.2.28)

such thatP, = lim P(t,t,), whereP, (t,t, )is the solution of the differential Riccati ecweti

tf >
P=-P(A+al)-(A+al)P+PBR'B'P-Q
with boundary condition
R, (t;.,t;) =0.

Further, all eigenvalues of the closed loop sys{@rf.25),(2.2.28) have real parts smaller
than-a.

2.2.4.2 Robustness properties

The control law which is a solution of the optinmabulator problem has been shown to be
stabilizing under suitable mind assumptions. Howgethes is not the only nice property that it
possesses. First the following lemma is neededsi@enthe system

%(t) == AX(t) + Bu(t), (2.2.30)
y(t) =Cx(t), (2.2.31)
u(t) = —R™B'Px(t) := Kx(t) (2.2.32)

whereP is any symmetric solution of the ARE
0=PA+AP_PBR'B'P+Q (2.2.33)
with Q-C'C andR=R> QO
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Lemma 2.2.3 LetK be given by equations (2.2.32),(2.2.33). Then
G (5)G(s)=1 +H (s)QH () (2.2.34)
where
G(s) =1 ~R°KH(9)
H(s)=(d _A)'BR™.

From equation (2.2.34), letting= jow, wUR, it follows that G'(—ja)G(ja) =1 since its
left-hand side is an hermitian matrix (actuallyisitthe product of a complex matrix by its
conjugate transpose), while its right-hand sidehis sum of the identity matrix with an
hermitian positive semidefinite matrix. In the pewtar case of a scalar control variable,
equation (2.2.34) implies that

1-K(jod ~A)"B21 OwOR. (2.2.35)

Based on this relation the following theorem stdtest the optimal closed loop system is
robust of bottphase and gain margin.

Theorem 2.2.9 Consider the system (2.2.30),(2.2.31) and asshate t

i) The inputu is scalar;

i) The triple (A,B,C ) is minimal;

i) In equation (2.2.32)P =P, the solution of equation (2.2.33) relevant to tfem
2.2.3 defined by the quadruplA BCC R ,. )

Then the phase margin of the closed loop systemtitess tharvz/3 while the gain margin
is infinite.

Theorem 2.2.10 Consider Problem 2.2.3 and assume that the(paB is,réachableQ > 0

and R>0 diagonal. Then each one of time loops of the system resulting from the
implementation of the optimal control law possessgsase margin not smaller thagi3
and an infinite gain margin.

2.2.4.3 Cheap control

The behaviour of the solution of the optimal regpigoroblem is now analyzed when the
penalty set on the control variable becomes leg®itant, that is when it is less mandatory
to keep the input values at low levels. When thatlsituation is reached where no cost is
associated to the use of the control variable ¢thrérol has become a cheap item) the input
can take on arbitrary high values and the ultinegpability of the system to follow the
desired behaviour (as expressed by the performade®) is put into evidence.

Consider the system

X(t) == Ax(t) + Bu(t), (2.2.36a)
y(t) =Cx(1), (2.2.36b)
X(0) = X (2.2.36¢)

which is assumed to be reachable and observabisidsr the performance index
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J :% j [V'(t)y(t) + pu'(t) Ru(t)]dt (2.2.37)

where R=R'>0 is given andp >0 is a scalar. The desired behaviour for the system

y()=0.
Under the assumptions above, the solution of thelEm 2.2.3 defined by equations (2.2.36)-
(2.2.37) exists for each initial state apd> and is specified by the control law

us (x, p) = —% R™'B'P(p)x (2.2.38)

where P(p )is the (unique) positive definite solution of tRRE

0=PA+ A'P—l PBR'B'P+C'C.
0

A preliminary result concerning the asymptotic pdjes of P(o ) is given in the following
lemma whereQ:=C'C, X°(t,p) is the solution of equations (2.2.36a), (2.2.38c2,38) and
u’(t, o) is the relevant control.

Lemma 2.2.4 The limit of P(p) as p — 0" exists and is denoted ;.

A meaningful measure of how similar the systemoesp is to the desired one (that is how
y([) is closed to zero) is supplied by the quantity

3,(%:0)= 5 [ X' (L. PIQC t p)ck

the limiting value of which is given in the follomg theorem.

Theorem 2.2.11 Let B, be the limit value ofP(o )Then
: 1,
lim J, (X5, 0) == X' PoXs -
p-0 2

Thanks to this theorem matrif, supplies the required information about the maxmu
achievable accuracy in attaining the desired behaviy([) = 0). The best result i¥,= .0

The circumstances under which this happens ardfigget the forthcoming theorem. For
the sake of simplicity, matricé® andC (which appear in equations (2.2.36a), (2.2.36l0) an
have dimensionsxm and pxn) are assumed to have rank equahtandp, respectively.

Theorem 2.2.12 Let system (2.2.36a), (2.2.36b) be both reachalole¢ observable. The
following conclusions hold:
)] If m<p,thenR, # G
i) If m=p, then P,= Oif and only if the transmission zeros of the systeave
nonpositive real parts;

i) If m>p and there exists a full rankix p matrix M such that the transmission
zeros of systenz(A,BM C, ,Ohave nonpositive real parts, th€g= . 0
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2.2.4.4 Inverse problem

Theinverse optimal control problem consists in finding, fogiaen system ancontrol law, a
performance index with respect to which such arobtaw is optimal. The discussion as well
as the solution of this seemingly useless probléowva us to clarify the ultimate properties of
a control law in order that it can be consideretinogl and to precisely evaluate the number
of degrees of freedom, which are actually availatdten designing a control law via an LQ
approach.

We will deal only with the case of scalar contrariable and time invariant system and
control law. Thus, the inverse problem is statedhanlinear dynamical system

X(t) = Ax(t) + Bu(t) (2.2.39)
and the control law
u(x) = Kx (2.2.40)

where the control variableis scalar, while the state vectohasn components. The problem
consists in finding a matriQ =Q'> @uch that the control law (2.2.40) is optimal tigkato

the system (2.2.39) and the performance index
J= j [X (H)QX(t) +u?(t)]dt . (2.2.41)
0

Sinceu is scalar, there is no lack of generality in tgkR=1.

For the above problem a few results are availasl®ng which the most significant one is
stated in the following theorem wheKeis assumed to be nonzero. If this is not the dhse,
solution of the problem would be trivial, namelgesmingly Q= Q

Theorem 2.2.13 With the reference to the system (2.2.39) ancctrgrol law (2.2.40) where
K #0, let the following assumptions be assumed:

(@al) The pair A B )is reachable;

(a2) The system (2.2.39),(2.2.40) is asymptoticsiiable;

(83) u(jw)=[l-K(jad ~A)'B[21, D real, u() # L

(@4) The pair(A K )is observable.

Then there existQ =Q'>= @Guch that the control law (2.2.40) is optimal floe LQ problem
defined on the system (2.2.39) and the performardex (2.2.41).

Remark 2.2.20 (Unnecessity of assumption (a4)) The forth assumption in Theorem can be
removed. Indeed, let the pajA, K be not observable and its unobservable part leadyr

put into evidence, so that

22 ey e

with the pair(A,K,) observable and the pajA,B,) reachable (this last claim follows from
the reachability assumption of the paiA B ). JTheorem 2.2.13 can be applied to the
subsystem>, described byx, = Ax, + B,u and the control law = K, x, . In fact, assumption

(a2) is verified for the tripld A, B,,K,) if it holds for the triple(A,B,K ) since
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+
A+ BK :{Al BiK, O]

A +BK, A
Furthermore, since
K(sl —A)*B=K, (sl —A)™B,,

if condition (a3) holds for the tripl€A,B,K) it holds also for the tripl€A,B,,K,). Thus a
matrix Q, can be found which defines a performance indeative to which K x is an
optimal control law for the subsystefn . It is then obvious that matth:diag[Ql O]
specifies a performance index corresponding to ki@ given control law is optimal (the
state of the subsystem,, = A x, + Ax,, + B,u affects neither in a direct nor in an indirect

way the performance index. Thus, it should not gbuate to the current value of the control
variable).

Remark 2.2.21 (Degrees of freedom in the choice of the performance index)

Only the structure of the performance index shduddtonsidered as given. The relevant free
parameters are being selected (through a sequdneianally performed trails) so as to
specify a satisfactory control law. If the conttalv is scalar, the number of theses design
parameters is substantially less thlanw, that is the number of elementsRiand Q.

On one handR can be set to 1 without loss of generality, while,the other hand, under the
mild assumptions of reachability ofA(B, gnd stability of the feedback system, conditions
(al)-(a3) of Theorem 2.2.13 are satisfied whentghecontrol law results from the solution of
the LQ problem corresponding to an arbitr&@y . These conditions are sufficient to ensure
the existence of the solution of the inverse pnobl@hus, the same control law must also
result from aQ expressed as the product of mmector by its transpose and the really free
parameters ane

Conditions (al)-(a3) can further be weakened, upettbming necessary and sufficient. These
new conditions are presented in the following teeowhere the tripldA,B,K has already
undergone the canonical decomposition, thus exhgihe form

AA A A B,

a=| O A 9 A g B K=[0o K, 0 K,] (2.247)
0 0 A A 0
0 0 0 A 0

with the pair(A ,B,) reachable, the paifA,,K, Qbservable and

222

A):{A5 A‘S] K, =[K, K,].

A

0 A

Theorem 2.2.14 With reference to the system (2.2.39) and theroblaw (2.2.40) there
exists a matrixQ =Q'> GOsuch that the optimal regulator problem definedhat system and
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the performance index (2.2.41) admits a solutigreéxh initial state. The solutions specified
by the given control law if and only if
(al) All the eigenvalues of, have negative real part,
(a2) All the eigenvalues of + B,K, have negative real part,
(a3) One of the two following conditions holds:
(@31)K =0
(@32) w(jw)=[l-K,(jod ~A)"B|21 Dw real, p(#1.

2.3TheLQG problem

2.3.1 Introduction

The discussion in this chapter is dedicated to & pwely deterministic framework and

focused on two problems, which concern with one #rel same stochastic system. The
connection between these problems and the preyiqusisented material is not apparent
from the very beginning while it will be shown te lvery tight. Reference is made to a
stochastic system described by

(1) = A(t)X(t) + B(t)u(t) +v(t) (2.3.1a)
y(t) = CO)X(t) +w(t) (2.3.1b)
X(to) = X% (2.3.1c)

where, as customar@, B, C are continuously differentiable functions. In etjpres (2.3.1a),
(2.3.1b) [ w] is a zero mean, gaussian stationary, (n+ p)-dimensional stochastic
process (n andp are the dimensions of the state and output vecidrgh is assumed to be a
while noise. In equation (2.3.1c) the initial stase an n-dimensionalgaussian random
variable independent frorﬁv‘ V\/]'. The uncertainty on system (2.3.1) is thus spestifiy

v(t)
E =0, Ot 2.3.2
[{W(t)}] 0, O, (2.3.2)
E[%,] =%, (2.3.3)
and
v(t) |, |V Z s
E[{W(t)}[v ) w(] {Z, W}d’(t 1)=Z0(t-71), Otr, (2.3.4)
E[x[v(t) w®]=0 *t, (2.3.5)
(% = %) (% = %) 1=, (2.3.6)
where the quantitie¥,, V, Z, W, I1, are given and is the impulsive function. Moreover,
matricesV , W, =, I, are symmetric and positive semidefinite.

The two problems under consideration are concenntidthe optimalestimate of the state of
system (2.3.1) and its optimadtdchastic) control. The first problem is to determine the
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optimal approximatiorx(t,) of X(t, ), relying on all available information, namely ttime
history of the control and output variablesapdy) on the intervalt,,t; Jand the uncertainty

characterization provided by equations (2.3.2)-6).3The second problem is to design a
regulator with input, which generates the contwko as to minimize a suitable performance
criterion.

Remark 2.3.1 (Different system models)
When the system under consideration is describetidgquation
X(t) = A(t)x(t) + B(t)u(t) + B* v*(t) (2.3.7)

wherev* is a zero mean white noise independent frgnand characterized by

vE(@) | ., — s
E[{W(t) }[v* (t) wOll=Zat-1)

with

VARV A
='=== >0, V*>0.

In this case the previously presented formulat®rstill adopted by defining the stochastic
process v:i=B*v * which verifies equations (2.3.1a), (2.3.2), (23.42.3.5) with
V=B*V*B¥,K6 Z:=B*Z*.

At other times, equations (2.3.1a), (2.3.1b) aptaieed by equations (2.3.7) and

y(t) = C()X(t) + C* v* (1) (2.3.8)

where v * is a zero mean white noise independentxgfwith intensity V* > Q Letting

v:=B*v* andw:=C*v * it is straightforward to get back to equations3(2)-(2.3.6) with
V=B*V*B*,Z=B*Z*, W.=C*V*C*,

2.3.2 Kalman filter

The problem of the optimal estimate or filtering thie state of system (2.3.1)-(2.3.6) is
considered in this section. The adopted performamiterion for the performed estimate is

the expected value of the square of the error @uher in evaluating an arbitrarily given

linear combination of the state components. Thagtioblem to be discussed can be formally
described as follows.

Problem 2.3.1 (Optimal estimate of b'x(t,)) Given an arbitrary vectdnJR", determine, on
the basis of the knowledge ¢ft (@ndu { ) t,<t<t,, a scalar8 such that the quantity

J, = E[(b'x(t;)-P)?] (2.3.9)
is minimized with reference to the system (2.32LB3.6).

We will consider two cases. The first one is ti@minal case where the matriwv (the
intensity of the output noise) is positive definite. The second one is the dsiagoase where
W is positive semidefinite. These two cases diffgnificantly from each other not only from
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technical point of view, but also of the meaningtbé underlying problem. In order to
understand this let recall that the maiNds symmetric and it can be presented as

W =T'DT
where T is an orthogonal matrix, matri® is diagonal D :=diag[d,,d,,...,d, 0,...,0] and
rank(W) =r . By letting

y =Ty,
it follows that

y* =TCx+Tw:=C* x+w*
with
E[w* (t)] =0 and E[w* (t)w*' (7)] = TEfWMt)W(7)]T'=D,

so that it is possible to conclude that the lastr components ofy *are not corrupted by

noise. In other words, the assumptid> gifes that no outputs or their linear combinations
are noise free.

2.3.2.1 Nominal case

The optimal state estimation problem is now consideainder the assumption that the matrix
W is positive definite. First, the observation inris supposed to be finite. Subsequently,
the case of infinite interval will be tackled.

Let —oo<t,<t, <. The Problem 2.3.1 is discussed under the additiooanstraint to the
scalar 8, which is asked ttinearly depend oty, according to the equation

B= jﬂ'(t)y(t)dt (2.3.10)

where the functiond t( )nust be selected so as to minimize the valueettherion (2.3.9).
However, it is possible to prove that the choice8.0 for the form of the estimate of
b'x(t;) does not actually cause any loss in optimalityceiin the adopted stochastic

framework the estimate which minimizdg is indeed of that form. With the reference to the
selection ofd the following result holds.

Theorem 2.3.1 Consider equation (2.3.10). The functig! which solves Problem 2.3.1
relative to system (2.3.1)-(2.3.6) when the obs@maanterval is finite,u() = Q X, =0 and

Z =0, is given by
F°(t) =WTC()M(t)a®(t) (2.3.11)

where 1 is the (unique, symmetric, positive semidefingejution of the differential Riccati
equation

F(t) = M)A ) + AN () - M E)C (OWCE)N (L) +V (1) (2.3.12)
satisfying the boundary condition
M(t,) =M, (2.3.13)
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while a?° is the unique solution of the linear equation
at)=-At)-nNe)C'HW'Ct)'at) (2.3.14)
satisfying the boundary condition
a(t,)=b (2.3.15)

Some explanations: if consider, over the intervdt,,t, , the dynamical system

a=-Aa+C'J (2.3.16a)
a(t,)=b (2.3.16b)
in view of equations (2.3.1a),(2.3.1b) it followsat
—d(gt ) =J'y-Jd'w+a'v

By integrating both sides of this equation betwegrand t, we get in view of equations
(2.3.10),(2.3.15),

B(t,) - B = (1) x(t,) - [ & WD)t + [ ' Ov(D)ct

By squaring both sides of this equation, perforntimg expected value operation, exploiting
the linearity of the operatd# and the identity(r's)> =r'ss'r and taking into account equation
(2.3.2)-(2.3.6) it follows that

Jb=a(%ﬁ%a@g+ﬁaﬁ»ﬂd0+ﬁﬁ»%%0wt (2.3.17)

and selecting® so as to minimizeJ, amounts to solving the optimal control problem

defined by the linear system (2.3.16) and the catadperformance index (2,3,17), i.e. an LQ
problem where the roles of the final and initiahéis have been interchanged.

Remark 2.3.2 (Meaning of 3°)
Within the particular framework into which Theore®2. is embedded, botk(t) and y ¢ )
are zero mean random variables becayse0 andv andw are zero mean white noises.

Therefore 8° is a zero mean random variable as well and itaseyahs given in Theorem
2.3.1, is the one which minimizes the variancehefeéstimation error o' x(t, .)

Remark 2.3.3 (Variance of the estimation error)
Theorem 2.3.1 allows us to easily conclude thabghtenal value of the performance criterion
is

J2 =bTit, )b

which is the minimal variance of the estimatioroemt timet, . Thus, the variance depends
on the value of the matrikl at that time. Note that the final tinte and the initial timet,
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are finite and given but generic. Therefdr€l(t)b is the minimal variance of the estimation
error of b X ¢ ).

Remark 2.3.4 (Correlated noises)
Whenv andw are correlated noiseg #0. In fact, it is easy to check that equation (2/3.1
becomes

Jb:aK%N%aaQ+jhfa»hﬂU—ZaKUZﬁa)+3aﬁN§aﬂm

to

so that the estimation problem reduces to an L®lpno with a rectangular term which can
be managed as shown in Remark 2.2.4. However, wbskat matrixV, =V -ZW™Z' is
positive semidefinite, sinc®¥, =T=T Where T := [I —ZW‘1J and, from equation (2.3.4),
=>0. Thus, Theorem 2.3.1 holds wijy A(t) replaced byV,, A.(t):=A(t)-ZW™C(t),
respectively, and equation (2.3.11) replaced by

F°() =W H(C@H)M(t)+Z)a°(t).
In view of this discussion there is no true lossgeherality in considering only the case
Z=0.
The importance of Theorem 2.3.1 is grater than tagipear from its statement. Indeed, it
allows us to devise the structure of a dynamicesyghe state of whick(t) is, for each

tO[ft,,t; ], the optimal estimate of the state of (2.3.1)-@.3This fact is presented in the
next Theorem.

Theorem 2.3.2 Consider the system (2.3.1)—(2.3.6) wiff) = , ¥} =0 andZ = 0. Then,
for eachbOR" and for—o <t, <t <t, <o the optimal estimate df x't (i b'x(), X(t)
being the state, at timgof the system

X(t) =[At) + LE)COIX(E) - LX)y (), (2.3.18a)
%(t,) =0 (2.3.18b)

where L(t):=-MN{)C't)W™ and M is the solution (unique, symmetric and positive
semidefinite) of the differential Riccati equatih3.12).

The above results can easily be generalized to watpethe case where() Z and X, 0

since the linearity of the system allows us to pefedently evaluate the effectsobf the
deterministic inpuu and the time propagation of the expected valuthefinitial state. The
presence of the deterministic input is taken irdcoant by simply adding the tertBu to the

equation ofx, while the propagation of the state expected vaueorrectly performed by
giving the valuex, to X(t, ).

Recalling thatE[X(t,) - X(t,)] = Q we can conclude thag[X(t) - x(t)] =0, Ot, andb'X {)
is still the estimate ob X t(Which entails an error with minimal variance. lroghb'X(t) is
said to be the optimal aninimal variance estimate ofb X t( ) thus justifying the commonly

adopted terminology according to which Problem 12i8.the minimal variance estimation
problem. These remarks are collected in the folhgwtheorem.
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Theorem 2.3.3 Consider the system (2.3.1)—(2.3.6) whit= 0. Then, for eaclb O R" and
for —eco <t, <t <t, <o the optimal variance estimate bfx(t) is b'x(), X(t) being the

state, at timé, of the system
X(t) =[A) + LECHIKE) - LA y(t) + BEOu(t), (2.3.19a)
X(t,) =%, (2.3.19b)
where L(t):=-MN{t)C'(t)W™ and M is the solution (unique, symmetric and positive

semidefinite) of the differential Riccati equati¢a3.12) satisfying the boundary condition
(2.3.13).

Remark 2.3.5 ( Not strictly proper system)
In view of the discussion preceding Theorem 2.B.3 quite obvious how the case where a
term D ¢ u¢) appears in eg. (2.3.1b) can be handed. Indeed,sitifficient to add toy,

which is the optimal estimate gfthe termDu, so that equation (2.3.19a) becomes

X=(A+LC)X-Ly+(B+LD)u.

Remark 2.3.6 (Meaning of IM(t))
By referring to the proof of Theorem 2.3.1, it &sg to conclude that
b'M ()b = E[(b'x(t) —b'X(t))*] = b E[(x(t) - X(t))(X(t) - X(1))']b.

Sinceb is arbitrary, the matrix1 t( )s the varianceof the optimal estimation error at tinte

therefore, any norm of it, for instance titace, constitutes, when evaluated at some tmex
meaningful measure of how good is the estimateopedd on the bases of the data available
uptor.

Remark 2.3.7 (Incorrelation between the estimation error and the filter state)
An interesting property of the Kalman filter is gato evidence by the following discussion.
Let e:= x—X and consider the system with st{a&é )“(] which is deduced by the equations

s T AT

By denoting with&(t) and X(t) the expected values aft (dnd X {), respectively, and
letting

=] €0 —&)
[L?(t) - X(t)

it follows that the matrices$l

}[e' M- *O-%O)= { al) ””(‘)} ,

I_|12I(t) I_I 22 (t)
i 1=12 = L1satisfy the differential equations

I_'|11 =M, (A+LC)+(A+LC)M, +V + LWL (2.3.20)
M, = (A+LC)M,, +M,A-M,C'L'-LWL' (2.3.21)

M,, ==LCM,, = M,,'C'L'+Al,, + I, A+L\W.'

with the boundary conditions
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My, () =My, (2.3.22)

M., =0, (2.3.23)
My (t,) = 0.

By recalling thatL = -MC'W ™, it is straightforward to check that equation (203 coincides
with equation(2.3.12) and that equation (2.3.22)indeed equation (2.3.13), so that
M,(@=nN(. From this identity, it follows that in equation2.8.21) it is

-N,,C'L'-LWL'=0: thus, M,,())=0 solves such an equation with the relevant boundary
condition (2.3.23). This fact proves that the sttt processesand x are uncorrelated. By
exploiting Remark 2.3.4, the same arguments caexbended to the case wherandw are
correlated(Z # 0)

The proof of Theorem 2.3.1 suggests which reswdtsaming to LQ problems are useful in
the case of an unbounded observation interval,ishahent, = —co . By referring to Section

2.2.3 of Chapter 2.2, the initial state of the sgsis supposed to be known and equal to zero,
so thatx, =0, N, =0 and a suitableeconstructability assumption is introduced (recall that

this property is dual to controllability). On thissis, the forthcoming theorem can be stated.

Theorem 2.3.4 Let the pair(A(t),C { ))be reconstructable fdr<t, . Then the problem of the
optimal state estimation for the system (2.3.1)3-@).with Z =0, X, =0, 1, =0 admits a
solution also whert, = -« . For eachbOR" and 7 <t, the optimal estimate ob x'7( Js
given byb'x_ (1), whereX_(7) is the limit approached by the solution, evaluaed, of the
equation
X(t) = [A) + LECOIKE) =~ L) y(t) + Bu(t), (2.3.24)
X(t,) =0

whent, = - . In equation (2.3.24)(t) :=-M(t)C'(t)W™ and, for allt, M is a symmetric
and positive semidefinite matrix given by

(1) = lim N(.t,),

M(,t,) being the solutior{unique, symmetric and positive semidefinite) of the differential
Riccati equation (2.3.12) satisfying the boundagdition I1(t,,t,) = O.

Thus, the apparatus, which supplies the optimaiest possesses the structure shown in in
Fig. 2.3.2 (with X, =0 and, if it is the case, the terdu added toy) also when the

observation interval is unbounded.

In a similar way, it is straightforward to handldtefring problems over an unbounded
observation interval when the system is time-irevatri indeed, it is sufficient to mimic the
results relevant to the optimal regulator probleim order to state the following theorem
which refers to the time-invariant system

%(t) = AX(t) + Bu(t) +v(t), (2.3.25a)
y(t) = Cx(t) + W(t). (2.3.25b)
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Theorem 2.3.5 Consider the system (2.3.25), (2.3.1¢c)—(2.3.6hvdt=0, X, =0, M, =0
and the pair(A,C) observable. Then the problem of the optimal sestEmation admits a
solution also whert, — —o. For eachbJR" and 7 <t, the optimal estimate ob x'7( Js

given byb'x_(7), wherex_ (7) is the limit approached by the solution, evaluated, of the
equation

X(t) =[ A+ LC]X(t) - Ly(t) + Bu(t), (2.3.26)
X(t,) =0

whent, = - . In equ. (2.3.26)L :=-MC'W™, T being a constant matrix, symmetric and
positive semidefinite, which solves the algebraiccRti equation

0=MA+AM-NC'W™CIM +V (2.3.27)
and is such that
) = lim N(t.t,),

M(t,t,) being the solutior{unique, symmetric and positive semidefinite) of the differential
Riccati equation (2.3.12) satisfying the boundargydition 1 (t,,t,) = O.

Obviously, then Theorem 2.3.5 applies the Kalmdierfiis a time-invariant system, the
stability properties of which can be analyzed asedwithin the framework of the optimal
regulator problem (Section 2.2.4.1 of Chapter 2.2Ml the results there are still valid,
provided the necessary modifications have beendhtolAs an example, the particularly
meaningful result concerning asymptotic stabiligndoe stated as shown in the following
theorem.

Theorem 2.3.6 Consider the system (2.2.25) and let the tri@e=,C be)minimal,F' being
any factorization o. Then the Kalman filter relevant to an unboundbdeovation interval
is asymptotically stable, i.e. all the eigenvalabthe matrix A+ LC have negative real parts.

2.3.2.2 Singular case

A possible way to dealing with the filtering proiviein the singular case is now presented
with reference to the time-invariant system desdilby (2.3.25). Thus the intensity of the
output noise is a matri¥ which is not positive definite, i.&v> ,0detW =0 and , for the
sake of simplicity, the rank of matrX (2.3.25b) is assumed to be equal to the numplodits
rows.

Denote withT := [Tl' T2'] an orthogonal matrix such that

el ]

where Q is a nonsingular matrix of dimensiomg < p. Letting y’ (t) :=Ty ¢ ), it follows that

V() = [yd (t)} _ {Tlcx(t)} . {le(t)}
Y] [TOx0] [Tw)

57



In view of the fact that the intensity of the whiteise T,w is zero, this relation can be
rewritten as

Yq (1) = Cox(t) + W), (2.3.28a)
Ye(t) = Cox(t) (2.3.28b)

whereC, =T,C, C_:=T,C and w’(t):=T,w ¢ ). The vectoru, (with p,components) is thus
constructed by those output variables, which ateadly affected by the noise while the
vector y, (with p— p,components) accounts for those output variableghwdre not affected

by it. Therefore, the noise-free information cadrley y, should be exploited in tackling the
state estimation problem. In this regard, Bthe an n—(p-p,)xn matrix such that
[CC' CD]' is nonsingular and denote Witﬁc I'D] the inverse of this last matrix. It follows
that

x(t) =Ty, (t) +T %O (t) (2.3.29)
where

x® () := Cx(t) . (2.3.30)
In principal, the time derivative of the noise-fresction y, can be computed so that from
egs. (2.3.25a), (2.3.16a), (2,3,28)—(2.3.30) iofek that
Yo (t) = C[AX(t) + Bu(t) + V()] =

(2.3.31a)
=C Ay, (t) +C A "x? (t) + C_Bu(t) + Cv(t)
o (1) -0 —
X7 (t) =CTAX(t) + BU(t)+V(*t)] = (2.3.31b)
=CAr,y,(t) + C"Ar 'x® (t) + C"Bu(t) + C"v(t)
Yq (t) = Cyle Y, (1) + CyT "x® (1) + (1) (2.3.31c)

Equations (2.3.31) define a dynamic system wittest® , known inputsu and Y., unknown
inputs (noisesy and w”, outputsy, and y,.. More concisely, equations (2.3.31) become

X9 (t) = A9 (t) + BOu® (t) +v® (t), (2.3.32a)

y@ ) =COxY (1) +DPu®(t) +w® (t), (2.3.32b)
[6h) — [h) — yc(t) @ . yd (t) (1) — WD(t)
wherev® (t):=C™V ) u®(t) '_{u(t)] y (t)'{yc(t) , w(t) = C )

and A¥ :=C"Ar”, B® :=|c"Ar, CcB|,c% = Cal™ D® = Gl 0 .
' i ' C.A|’ C.AT, C.B

The intensity of the white noiﬂe(l)' wt J is

civc™ czt' cic
=®=T,2’CcC™ Q TZ'C'|.
cyvc™ czr, cyC)!
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If the intensity ofw®, i.e. the matrix

WO = Q TZ'C!
| C.ZT, CVC!

is positive definite, the filtering problem relatito the system (2.3.32) is normal and the
results of the preceding section can be applieajiped that the probabilistic characterization

of x®(t,) could be performed on the basisatifavailable information. If, on the other hand,

W® is not positive definite, the above outlined piwe can again be applied. Note that the
dimension of the vector® is strictly less tham. Thus, the procedure can be iterated only a
finite number of times, and either the situationrésached wher&V® >0 or n noise-free
outputs are available and suited to exactly es@dvat

Assuming, for the sake of simplicity, ths¢® is positive definite, the expected value and
variance of the initial state of system (2.3.32a3 to be computed, givey, (t,) =C.x(t, . If

X(t,) is not adegenerate gaussian random variable, i.e.lif, > , @ can be shown that the
following relation hold

% = E[XY (t9) e (to)] = C'T%o + M1oC, (CeMoC ) [V (to) = CeXo 1l
MY = E[(x (t) = %) (t) = %)Y ()] = CTMp + M4C, (C.M,C, ) C.M,IC™
Let M® be the solution (unique, symmetric and positemislefinite) of the DRE
MO :=APNO@M)+NOHAL O N E)C® W ®)cOn® )
satisfying the boundary conditidi® (t,) =M. In this equation
AY =AY -Zz® W ®)ic® z® =|czT, cve-cl,

VO :=vO -zOWM)TZzO gndv @ :=CcvC"
Then the Kalman filter for the system (2.3.32) wiies uncertainty is specified as above and
the observation interval is finite, possessegties L, and L, given by the equation

L) L@®]=An®®CcY+zOw®)™, (2.3.33)

Notice that these gains are time-varying.
The actual implementation of the last result doesneed differentiation. In fact, the signal

y., after differentiation and multiplication by L_, undergoes integration. Sind@® is a
differentiable function, from equation (2.3.33Yatlows that also the functiofh is such, so
that

[L.OY. 0t =L O)y,0) - [L Oy, @t

and the filter can be implemented without differation since L, can be evaluated in
advance.
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2.3.3LQG control problem

The optimal control problem to be considered irs théction refers to the system (2.3.1)-
(2.3.6) and the performance index

1
t, -t

J=E

tt

J'(x' (DQ(t)x(t) +u' () R(t)u(t))dt (2.3.34)

0 t,

where, as in the LQ contexQ(t) =Q'(t)=0 and R(t) =R'(t)>0, Ot, are matrices of
continuously differentiable functions an@() # @ avoid triviality. In the performance
index (2.3.34) a term, which is a quadratic nontiggdunction of x(t, ) could also be added.

Its presence, however, does not after the essehdbeoproblem but rather makes the
discussion a little more involved. For the sakeiaiplicity here and likewise the intensity

of the noisawv is assumed to be positive definite.

The Linear Quadratic Gaussian (LQG) optimal conproblem under consideration is defined
in the following way

Theorem 2.3.2 (LQG problem) Consider the system (2.3.1)—(2.3/@0)d the control, which
minimizes the performance index (2.3.34).

In problem 2.3.2, the control interval is given andy or may not be finite. In the first case, it
is obvious that the multiplicative factor in froot the integral is not important, while in the
second case it is essential as far as the bounsiedhéhe performance index is concerned.

2.3.3.1 Finite control horizon

The solution of problem 2.3.2 is very simple anchedhow obvious. In fact, according to it,
the actual value of the control variable is maddapend on the optimal estimate of the state
of the system (t.e. the state of the Kalman filtrpugh a gain matrix resulting from the
minimization of thedeterministic version of the performance index (2.3.34) in anddtext,
namely

t

Ja = I(X' (ORMX() +u'(OR(t)u(t))dt

ty
The precise statement of the relevant result isginehe following theorem
Theorem 2.3.7 Let Z=0, t, andt; be given such thato <t, <t; <o . Then the solution
of Problem 2.3.2 is

ug (X,t) = K(t)X (2.3.35)
where X is the state of Kalman filter

X(t) =[A®) + L{E)C()]X(E) + B(t)u (X(t),t) = L(t) y(t) (2.3.36)

with  X(t,)=X,. In equations (2.3.35), (2.3.36),K(t)=-R*'(t)B'(t)Pt ()and

L(t) =-A@t)C'(t)W™, whereP and M are the solutions (unique, symmetric and positive
semidefinite) of the differential Riccati equations
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P(t) = -P(t) At) - A(t)P(t) + P()B()R™ (t) B' () P(t) - Q(1) ,
M(t) =N A )+ AN () - NE)C W Cr)N (L) +V
satisfying the boundary conditio¥t, ) =0, (t,) =M, respectively.

Remark 2.3.8 (Optimal value of the performance index)
The value of] resulting from the implementation of the contraivl given in Theorem 2.3.7
can easily be evaluated by computing the quanijtywhich is defined in the proof of the

quoted theorem . By taking into account equatio8.85) it follows that
tf ts
J, = t{J'Q(t)I‘I (t)dt} + ED X (1)[Q(t) + K'(t)R(t)K(t)])“((t)dt}
to ty
In view of Remark 2.2.9 the second term is given by

t{PK (120%™ [ LOWL' (P, (t)dt}

to

where P, is the solution of the equation

P, =-P.(A+BK)-(A+BK)'P, —-(Q+ K'RK)

with the boundary conditiof®, (t;) = .0n writing down these relations the equation far

the relevant boundary condition and the circumsahat the noise intensity W have been
taken into consideration. It is straightforwardcteeck that the DRE fdP (in the statement of
the quoted theorem) reduces to the differentiabégo given above, provided that the terms
+ PBK, £+ K'B'P are added to the DRE itself and the expressidf isftaken into account.
Therefore it follows that

J, =X,"P(ty)X, +tr Jf-[Q(t)I'I (t) + LWL () P(t)]dt | .

to

2.3.3.2 Infinite control horizon

Unbounded control intervals can be dealt with @isa stochastic context and a patrtially nice
solution found when the problem at hand is statipndous paralleling the results of the LQ
and filtering framework. Consistent with eq.(2.3,34he performance index to be minimized
is

J=g lim — j (X (OQ) (L) + U’ () R()u(t))dt (2.3.37)

where the matrice® andR satisfy the usual continuity and sign definiticesssumptions.
Moreover, the system (2.3.1)-(2.3.6) is controkabhd reconstructable for dll the initial
state is zeroZ = 0and W > Q If these assumptions are satisfied the solutanthe two
DRE relevant to Problem 2.3.2 can indefinitely exiied and the following theorem holds
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Theorem 2.3.8 Assume that the above assumptions hold. Thendaloéian of Problem 2.3.2
when the control interval is unbounded that is whiea performance index is given by
equation (2.3.37) , is constituted by the contoal |

ud(x,t) = K(t)x
where X is the state of the Kalman filter
X(t) =[A(t) + LE)COIR() + B(t)ug (X(t),t) — L (t) y(t)
with K (t) =-R™(t)B'(t)P(t) and L(t)=-N(t)C'(t)W™. The matricesP and I are given
by
P(t)=lim P(t.t,),

no = lim N(.t,),

where P(t,t, )and(t,t, ) are the solutions of the differential Riccati efijpas specified in
Theorem 2.3.7 with the boundary conditioPg, ,t;) = a@(t,t,)= Q

Remark 2.3.9 (Optimal value of the performance index)
If the LQG problem over an infinite interval admiéssolution, the optimal value of the
performance index can easily be evaluated by iateto Remark 2.3.8. Thus

t

JO:t"HLt —tr JL[Q(t)ﬁ(t)+E(t)VVE'(t)5(t)]dt :

The case when all the problem data are constardgndes particular attention: the most
significant features are the constancy of matriBesand M (and hence of matrice and

L, too) and the fact that they satisfy the ARE riisglfrom setting to zero the derivatives in
the DRE of the statement of Theorem 2.3.8. The mapge of this particular framework

justifies the formal presentation of the relevaesult in the forthcoming theorem where
(unnecessarily) restrictive assumptions are madeder to simplify its statement and some
results concerning Riccati equations are exploited.

Theorem 2.3.9 Let the matricesA, B, C, Q:=Q"Q", R be constantZ =0, V:=VV",
W > 0. Moreover let the couple&A, B gnd (A V") be reachable and the couplgsC and

(A,Q") observable. Then the solution of Problem 2.3.2 rwtiee control interval is not

bounded, i.e. when the performance index is giverd (2.3.37), is specified by the control
low

us(x) = KX
where X is the state of the Kalman filter
X(t) = (A+LC)X(t) + Bug (X(t)) - Ly(t)

with K =-R™B'P and L =-MC'W™. The matricesP and M are the unique, positive
definite solutions of the algebraic Riccati equasio

0=PA+AP-PBR'B'R+Q,
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0=MA+AMN-MNC'W™CM +V..

Remark 2.3.10 (Optimal value of the performance index in the time-invariant case)
In view of Remark 2.3.9 , the optimal value of gfexformance index when the LQG problem
is time-invariant and the control interval is unhdad is given simply by

J° =tr[QM + PLWL']

This expression implies thad® >tr[QI] since the second term is nonnegative. (The

eigenvalues of the product of the two symmetric itpes semidefinite matrices are
nonnegative). This inequality holds independentlyhe actual matrixR. Therefore, even the
control cost becomes negligible (i.e. whn- 0), the value of the performance index cannot

be less thartr[QI] which, in a sense, might be seen asptee to be paid because of the
imprecise knowledge of the system state. Since it can atsprbved that

J° =tr[PV + MK'RK],

the conclusion can be drown that > tr[PV] and again, even when the output measurement
becomes arbitrary accuraf@/ -~ ,@he optimal value of the performance index cariyet

less thantr[PV] which, in a sense, might be seen asptiee to be paid because of the
presence of the input noise.

Remark 2.3.11 (Sability of the LQG solution)

When the assumptions of Theorem 2.3.10 hold, theltieg control system is asymptotically
stable. Indeed, since the Kalman filter, whichhis tore of the controller, has the structure of
a state observer. It follows that the eigenvaluethe control system are those of matrices

A+BK and A+LC. All these eigenvalues have negative real partaise the solutions of

the ARE (from which the matricel§ and L originate) are stabilizing (recall the assumptions
of Theorem 2.3.10).

The solution of the optimal regulator problem hagerb provedobust in terms of phase and
gain margins (see Subsection 2.2.4.2 of Sectiod 2n2Chapter 2.2.1) The same conclusions
hold in the filtering context because of the dydtietween the two problems. Thus one might
conclude that the controller defined in Theorem2iBplies that the resulting control system
is endowed with analogous robustness propertiels megard to the presence of phase and
gain uncertainties on thentrol side and/or theoutput side. This actually feels to be true.

The unpleasant output is caused by the followirg fBhe transfer function

T,(s):=-K(sl - (A+BK +LC))™LG(s)

does not coincide with the transfer functidp(s):= K(sl - A)™ B which is expedient in

proving the robustness of the solution of the LQbem. A similar discussion applies to the
other side ofG € ) with reference to the transfer function

T,(s) = -G(s)K (sl —=(A+BK +LC))™L
and to the transfer functiof, (s) := C(sl — A)™'L which , in the Kalman filter framework,
plays the same role, from the robusthess pointiefvas T, does in the optimal regulator

setting. It is steel easy to check tfat is the transfer function which results from cugtihe
above quoted scheme at the poilt Therefore, if the four matrice®, R, V, W, aregiven
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data of the problem and the available knowledgéhercontrolled process is not accurate, no
robustness properties campriori be guaranteed to the control system either oac¢heator or

on sensor sides. On the other hand, if, as ofténeicase, the four matrices above are to be
meant adree parameters to be selected while carrying ovemaesece of trials suggested by
a synthetic procedure which exploits the LQG resutien a wise choice of them may again
ensure specific robustness properties. In factebgrting to reasoning similar to which led to
Theorem 2.2.12 of Subsection 2.2.4.3, the followiesults can be proved. They are started
under the assumptions that the number of controabigsu equals the number of output
variablesy and the matriceB C are full rank.

Theorem 2.3.11 Let the triple (A,B,C) be minimal andv =vBB'. Then, if no transmission
zeros of the triplg(A,B,C has positive real part, the functidp approaches the function

Remark 2.3.12 (Alternative statement of Theorem 2.3.10 and 2.3.11)

By recalling the role plaid by the matric€3 and R in specifying the meaning of the
performance index and by matricéandW in defining the noises characteristics, it shdugd
fairly obvious that instead letting matric®@andV go to infinity, we could let matriceR and
W go to zero.
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Chapter 3

Robust optimal control

3.1 H,, Optimal Control: Riccati-Approach

3.1.1 Introduction

In the last chapter, we considered the problem regipect to thed, norm. The performance
specifications were given in the time domain. Rogle input single output (SISO) problems,
for specifications in frequency domain tie, norm is an adequate tool. In this way we are
naturally lead to the question of how controlleen cbe characterized in a way which
minimizes the closed loop transfer functiét), with respect to theH,, norm. There are two
important methods for solving this problem. Onéased on two Riccati equations similar to
those used in théd problem. It will be analyzed in this chapter, wees the other method
uses linear matrix inequalities.

We are lead to the characterization of suboptinoakrollers instead of optimal controllers.
The basic idea for solving the characterizatiorbfgm is, as for thed  problem a change of
variables of the kindv=u-Fx, with a matrixF with is related to a Riccati equation. The

resulting problem is again an output estimationbfgnm, which can be reduced in several
steps to a full information problem. The technidatails are much more complicated as for

the H_ problem. Thereby the basic structure of the pisusimilar to that inH control. In
particular, the assumptioD,, =0 is made again. This assumption is naturalHior problems
but restrictive forH_ problems, since the introduction of weights inesrtb get a certain
closed loop frequency response normally leads twemgdized plants withD,, Z0. It is

possible to reduce problems with,, #0 to ones withD,; =0 by a procedure called loop

shifting. The introduction of frequency dependemights leads in many situations to a so-
called mixed sensitivity problem. We discuss itethger with problems based on other
weighting schemes and finally present a resufpar-zero cancellations.

3.1.2 Formulation of the general H., problem

We start with a general plant of the form
X=Ax+Bw+ B,u,
z=Cxx+ D, w+ DU,
y =CyX+ DyyWw+ Dyyu
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A controller K(s) is denoted as admissible, if it is proper and stabilizes internally the
systemF,, § ) We now formulate the following problem.

Problem 3.1.1 (Optimal H_ problem) Find all admissible controller& s ( Wwhich minimize
the H_ norm of the feedback system. i.e. all admissiblgmllers that minimizé;}F

ZW”oo )

For the minimization of theH_ norm it is more natural to ask for all suboptiroahtrollers.
Finding an optimal controller is more difficult anidesides this, optimal controllers for the
H_ problem are not unique. They can be viewed adintiiecase for suboptimal controllers
and are not explicitly constructed. Therefore weelad to the following problem.

Problem 3.1.2 (Suboptimal H_ problem) For a giveny > 0Qfind all admissible controllers
K(s) with |F,|_ <. Such a controller is denotedsasboptimal.

We define
Voo =INf{|F|. | K(s)isadmissable} .
Note that fory =y, , there are no suboptimal controllers. For numbersvhich are greater

than the optimal valug,,, there are always admissible controllers wjey, [ <y . It is
possible to characterize the suboptimal controlbetsnging toy > y,,, completely.

3.1.3 Characterization of H_suboptimal controllers by
means of Riccati equations

3.1.3.1 Characterization theorem for output feedback

In this section, we describe suboptintdl controllers for problems with a special structure.
The following assumptions are made.

(al) (A B,)) is stabilizable andC,, A) is detectable.
(@2) (A B,) is stabilizable andC,, A) is detectable.
(@3) Db,'C,=0andD,,'D,, =1.

(a4) D;;=0 andD,, =0.

These assumptions are too restrictive. Later itlvéilshown how they can be relaxed.
Our first question is under which conditions intdrstability is equivalent to

F,O00H, .

Corollary 3.1.3.1 The assumptions (al),(a3),(a4) imply that the faelldoop is internally
stable if and only ifF,, OOH,, .

For the next theorem, the following Hamiltonian rcas are used:

66



H = A V_ZBlBll_Bszl_
© -GG -A

J = A y_zcllcl_czlcz_
* |-BB' -A '

Theorem 3.1.3.1 Suppose the assumptions (al)-(a5) hold. Then tests an admissible
controller with||[F,,|_ <y is and only if the following conditions are fuléh:

() H.Odom(Ric) and X_=Ric(H.)=0;
() J.Odom(Ric) and Y, =Ric(J.)=0;
i) p(X_Y.) <>

If these conditions hold, such a controller is

BPNSETS

with
A A+y?BB'X, +Z,L.C,
L. =-Y.C,", Z =(l =AY, X )"

It is possible to describe this controller with @pserver. The controller can equivalently be
written in the form

X=AX+BW,,, +Bu+Z, L (C,X-Y)
u=FX, W,q=yV"’B'X.X.
The first equation defines an observer. The t&i, = y°B,' XX can be understood as an
Lo = V2B X X. In this way, one gets a controller-observer

structure similar to that for thel, problem. In contrast to this problem, the vedBrenters
in the H_ observer.

estimate of the disturbanos

The H_ suboptimal controller has also the representation
Ky =(8)=-Z.L.(s -A)F,.

It has as many states as the generalized pR{(s} and is strictly proper. The Riccati
equations forX_ andY, are

X, A+A X, - X_(B,B,~y?BB)X, +CC,'=0 (3.1.1)
AY, +Y,A-Y,(C,'C, - y?C,'C,)Y, +BB,'=0 (3.1.2)
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3.1.3.2 Outline of the proof

It is seen that the inequaliﬂFM”w < y can equivalently be written as

145 - VWl <0 forall wiL[0w), w#0  (3.1.3)
Herezis given by
X=Ax+Bw+Bu, x(0)=0
z=Cx+Dpu ’

whereu is the controller output. We assume that the Rii@guation (3.1.1) has a solution
X, . Using this equation and assumption (a3) and ssipgahat x(t) tends tox, =0 as
t -~ 0 one obtains

[ = v, =+ Bo XAz = v w= B XX

If all states are available, the choice

2
2

(3.1.4)

u=-B,'Z,x (3.1.5)

can be made. This leads to

4, = vl ==y w=y "B XX

The difference on the right-hand side vanishes dotyx =0 and w= 0. Hence, with the
controller (3.1.5) inequality (3.1.3) holds andrifere we havdF, | <.

2
2

for every wOL,[0,).

We need the following matrices
AFm =A+B,F,, Cle =C, +DyF.,.
The next lemma is a first step in solving the faflormation (FI) problem forH_ optimal

control.

Lemma 3.1.3.1 Suppose H_, Odom(Ric) and X_=Ric(H,)=0. Then the inequality

|IF,|., < is fulfilled if the controller is given by the cstant matrix

o

K(s)=-B,'X..

This lemma is also the key for the solution of tiservable eigenvalue (OE),, problem.
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