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Preface 
 
 
Beginning in the late 1950s and continuing today, the issues concerning dynamic optimization 
have received a lot of attention within the framework of control theory. The impact of optimal 
control is witnessed by the magnitude of the work and the number of results that have been 
obtained, spanning theoretical aspects as well as applications. The need to make a selection 
(inside the usually large set of different alternatives which are available when facing a control 
problem) of a strategy both rational and effective is likely to be one of the most significant 
motivations for the interest devoted to optimal control. 
A further, and not negligible, reason originates from the simplicity and the conceptual 
clearness of the statement of a standard optimal control problem: indeed it usually requires 
specifying the following three items: 
(a) The equations which constitute the model of the controlled system; 
(b) The criterion, referred to as the performance index, according to which the system 
behavior has to be evaluated; 
(c) The set of constraints active on the system state, output, control variables, not yet 
accounted for by the system model.  
The difficulties inherent in points (a) and (c) above are not specific to the optimization 
context, while the selection of an adequate performance index may constitute a challenging 
issue. Indeed, the achievement of a certain goal (clearly identified on a qualitative basis only) 
can often be specified in a variety of forms or by means of an expression which is well 
defined only as far as its structure is concerned, while the values of a set parameters are on the 
contrary to be (arbitrary) selected. However, this feature of optimal control problems, which 
might appear as capable of raising serious difficulties, frequently proves to be expedient, 
whenever it is suitably exploited by the designer, in achieving a satisfactory trade-off among 
various, possibly conflicting, and instance through a sequence of rationally performed trials.  
The flexibility of optimal control theory together whit the availability of suitable computing 
instruments has occasionally caused an excess of confidence in its capability to solve (almost 
all) problems, thus exposing it to severe criticisms and, as a reaction, giving rise to a similarly 
unjustified belief that it was a formally nice, but essentially useless, mathematical 
construction. The truth lying somewhere between these two extreme points, the contribution 
of optimal control theory can be evaluated in a correct way only if an adequate knowledge of 
its potentialities and limits has been acquired. In this perspective the motivation of the present 
book is twofold: from one side it aims to supply the basic knowledge of optimal control 
theory, while from the other side it provides the required background for the understanding of 
many recent and significant developments in the field (one for all, the control of Hardy 
spaces) which are undoubtedly and deeply rooted in such a theory.  
Three out of the many possible forms of rendezvous problems are now briefly presented in 
order to shed light on some typical aspects of optimal control problems: for this reason it is 
useless to mention explicitly the set of equations which describe the dynamic behavior of the 
controlled system and constitute the main, always present, constrain.  
Problem 1: The initial state 0x  is given, while the final time ft  when the rendezvous takes 

place is free since it is the performance index J to be minimized. Thus  

∫=
ft

t

dtJ
0

. 
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Besides the constraint )()( fbf txtx =  (which is peculiar to the problem), other requirements 

can be set forth us, for instance, Mm utuu ≤≤ )(  which account for limits on the control 

actions.  
Problem 2: The initial state 0x , the initial time 0t  and the final time ft  are given. The final 

state is only partially specified (for instance, the final position is given, while the final 
velocity is free inside a certain set of values) and the performance index aims at evaluating the 
global control effort (to be minimized) by means of an expression of the kind 

0,)(
0

1

2 >= ∫∑
=

i

t

t

m

i
ii rdtturJ

f

 

where iu  is the i-th component of the control variable u. The peculiar constraint of the 

problem is )()( ττ bxx = , where the time τ  when the rendezvous takes place must satisfy the 

condition ftt <<τ0  and may or may not be specified.  

Problem 3: This particular version of the rendezvous problem is sometimes referred to as the 
interception problem. The initial state 0x  may or may not be completely specified, while both 

the initial and final times 0t  and ft  are to be selected under the obvious constraint Ttt f ≤<0 . 

The final state is free and the performance index is as in Problem 2. The peculiar constraint of 
the problem involves some of the state variables only (the positions),  )()( τξτξ b= , where the 

time τ  when interception takes place may or may not be given and satisfies the condition 

ftt <<τ0 .  
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Chapter 1.   
 
 
Control of systems 
 
1.1 Preliminary 

 
Modern Control theory or Theory of optimal control started in the 1950s. It was to a large 
extent of the classical Calculus of variations. However, it actually contained much more. In 
more general sense, Control theory can be seen as an extension of the theory of differential 
equations or of dynamical systems. It is a study of global properties of certain families of 
dynamical systems. 
From the beginning, control theory leans towards application. Some examples in physical 
systems are stable performance of motors and machinery and optimal guidance of rockets. In 
management it is optimal exploitation of natural resources. In economics it is optimal 
investment or production strategies. In biology and medicine these are regulation of 
physiological functions, fighting against insects and so on.  
Any system described by differential equations of the evolution type, can be converted into a 
control system by adding an input variable representing the action on some controller upon 
the system. The interpretation of this control as a willful action of a person is just one 
possibility. The added input can also be called "noise" and represent many factors about 
which we may not have any influence nor even knowledge.  
 
 

1.2 Mathematical Modeling 
 
When attempting to study the behavior of certain systems, it is convenient to consider the 
ideal case of an isolated system, i.e. a number of interesting elements, which do not have any 
interaction with respect of the world. In such isolated systems the conditions are simpler, and 
therefore easier to study.  
We may consider systems, which are isolated except for some well defined actions affecting 
them. We think of this outside action, also called input or control as the result of decisions of 
a controller. The important information we need is a rile, within the description of the system, 
of which inputs are possible and which are not. The possible inputs will then be called 
admissible.  
The big difference between systems without and with inputs lies in the type of problems, 
which are meaningful to be posed for them. For systems without inputs, the basic problem is 
to predict the future behavior. For this purpose the differential equations are exactly tailored. 
But the prediction of future evolution is not the only meaningful problem to be posed. The 
whole field of engineering and technology deals with the inverse problem: given a desired 
future evolution, how should we construct the system? 
For systems with inputs two of the basic questions are: (a) given the initial conditions, which 
are the "states" of the system, which we can reach by choosing suitable inputs? and (b) which 
are the best inputs to be used in some well prescribed sense? 
The mathematical description of a system is given by a differential equation of the type 



 8

       ),( xtfx =& ,             (1.2.1) 

where t is the time and T
nxxxx ),...,,( 21=  is the state. The function nn RRRf →×: , 

representing the laws governing the evolution of the system, is assumed to be known. 
Together with the initial conditions 

         00 )( xtx = ,             (1.2.2) 

(1.2.1) determines the solution )(tx  uniquely. If the function f in (1.2.1) does not depend on t, 
i.e. of the form 

        )(xfx =& ,              (1.2.3) 

it means that the system is invariant in time and is called autonomous. For an autonomous 
system, if )(tx  is a solution, then )( 0ttx −  is also a solution for any 0t . Autonomous systems 

are also called dynamical systems. They are geometrically appealing, since the trajectories are 
fixed curves in ℵ -space. 
Any non-autonomous system can be transformed into an autonomous one by increasing the 
dimension of the state space nR  in one, practically transforming the time t  into an additional 
coordinate of the state space. Hence, most properties of autonomous control systems can be 
extended, in some sense, to non-autonomous ones. But doing so, in many cases the 
corresponding properties loose their interest. 
A control system will be described by a differential system 

       ),,( uxtfx =& ,             (1.2.4) 

where t is the time (independent variable), nRx ∈ is the state of the system and 
mT

m Ruuuu ∈= ),...,,( 21  is the control. The control is assumed to be an arbitrary function 

)(tu , but some restrictions must be imposed. It must be measurable function. Another 
restriction of the control which appears in many applications is the requirement that the values 
of )(tu  belong to a specified set U 

         Utu ∈)(   ( mRU ∈ )            (1.2.5) 

An admissible control is therefore a measurable function )(tu  satisfying (1.2.5). The set U 
can be fixed or depending on t and/or x. For each admissible control )(tu , (1.2.4) is a 
differential equation 

              ))(,,( tuxtfx =& .  

Its solution )(tx  (expected to exist and be unique) is then also called admissible solution 
(also trajectory or orbit). 
For an autonomous control system ),,(uxtf  does not contain t and the constraint Uu ∈  is 
also independent of t.  

         ),( uxfx =& ,  Uu ∈ ,           (1.2.6) 

The pairs of admissible control and admissible solution are time invariant. When the "modern 
control theory" developed, it was mostly as a "theory of optimal control". The techniques 
involved were from the theory of differential equations, but the problem setting was usually 
an optimization of a given functional. It was, therefore, a somewhat particular case within the 
much older "classical calculus of variations". 
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The classical calculus of variations extends the theory of maxima and minima from calculus 
to functional analysis, where the unknown is not a value of x, but a whole function )(tx .  
In classical theory, the unknown is consistently assumed to be an interior point of some 
domain in this function space. In many important problems this is certainly not the case. The 
customary linear feedback controls did not satisfy all the requirements of the emerging 
applications. Discontinuous feedback controls were quite efficient but not fit into any general 
theory. Pontryagin succeeded in developing a theory of control optimization which, contrary 
to the classical calculus of variations, could take care of discontinuous controls )(tu  and 
unilateral constraints.  
 
 

1.3 General properties of control systems 
 
 
1.3.1 Definitions 
 
We will refer mainly to the continuous case for processes described by differential equations 

     ),,( uxtfx =& ,  Utu ∈)( ,            (1.3.1) 

where RIt ⊂∈  is thought as the time, nRx ⊂ℵ∈  is the state and mRUu ⊂∈  is the control. 
The state x and the control u are assumed to be functions of t. This control system is therefore 
determined by the function f and the control set U. The function nn RURIf →××:  is 
assumed continuous in ),(ux , Lipschiz in x, measurable in t. Furthermore, it is assumed that 

for all Uu ∈  and x in any given compact subset of nR , there exists a majorizing integrable 
function )(tm  such that 

      )(),,( tmuxtf ≤ . 

Under these conditions, given 0t , 0x  as initial conditions 

           00 )( xtx = ,              (1.3.2) 

and given a measurable function )(tu  with values in U, defined in some interval 

],[ 10 ttI = ,the well known Caratheodory conditions guarantee the existence and uniqueness 

of a solution )(tx  of the initial value problem (1.3.1),(1.3.2), at least in some interval ),[ 0
∗tt . 

The admissible control )(tu , defined on a suitable t-interval I, is an integrable function 
mapping I into the control set U. 
For each particular choice of the admissible control )(tu , the problem reduces to the 
integration of the differential equation (3.1) (where )(tu  is then known), hence, control theory 
could be expected not to present any new problems. But this only refers to finding particular 
solutions )(tx , while a great variety of other problems can also be posed referring to the set of 
all solutions. Let us see a simple example. 

Example 1.3.1  
Let the state space ℵbe the real line and consider the control system defined by 

          ux =& ,     1)( ≤tu .             (1.3.3) 

With the initial condition 
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           0)0( xx =  

the solution is 

      ∫+=
t

dssuxtx
0

0 )()( .             (1.3.4) 

Now we can start posing problems. A basic question: what is the set of points )(tx  obtained 
for all possible choices of admissible controls )(su , for a given end-time t? This set will be 

called Attainable set at t, starting from 0x  at time 0t , and denoted by ),,( 00 xttA . 

It is immediate that, with a maximum velocity equal to 1 in either direction, the attainable set 
is the interval between the points tx ±0 . These two end-points can be attained in only one 

way: using (3.4), 1)( =su  or 1)( −=su  all the time. For all the points like 1x  in between, the 

control )(su  satisfying (3.3) and accomplishing 1)( xtx =  is not uniquely determined. 
    
The class of control systems which are linear in ),( ux , i.e. are of the form 

           )()()( tcutBxtAx ++=&  

with A and B suitable matrices and c a vector, are very important. They can model many 
applications and at the same time are easy to study analytically. In the most cases the term 

)(tc  is set equal to zero, since this is the case in most applications. Hence, we will consider 
the linear control system  

      utBxtAx )()( +=&              (1.3.5) 

with initial conditions 

            00 )( xtx = .              (1.3.6) 

The solution of initial-value problem (1.3.5),(1.3.6) is given by the "variations of parameters" 
formula 

         ∫Φ+Φ=
t

t

dssusBstxtttx
0

)()(),(),()( 00 .           (1.3.7) 

Here, ),( 0ttΦ  is the fundamental matrix of the homogeneous system 

            xtAx )(=& . 
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This fundamental matrix satisfies the matrix differential equation 

      ),()(
),(

0
0 tttA

t

tt Φ=
∂

Φ∂
             (1.3.8) 

with the initial condition 

       Itt =Φ ),( 00 ,             (1.3.9) 

where I is the identity matrix. It also satisfies the inevitability relation 

        ),(),( 00
1 tttt Φ=Φ − .           (1.3.10) 

Setting 0)( =tu , i.e. considering the uncontrolled or free system, the solution )(tx  is given by 

the first term of the right side of (1.3.7). On the other hand, if we set 00 =x , the solution will 

be given by the last term of (1.3.7). This gives the following superposition principle:  
The solution of the linear control system (1.3.5) is the sum of the solution of the 
homogeneous system with the given initial condition (1.3.6) plus the solution of the non-
homogeneous system (1.3.5) with initial condition zero. 
Consider the system (1.3.5)-(1.3.6) with )(tA , )(tB , U and t, 0t  given. Then ),( 0ttΦ  is 

determined as solution of (1.3.8)-(1.3.10). If we think of inserting in (1.3.7) all admissible 
controls )(su , we will obtain all attainable points )(tx . Hence, the attainable set of the linear 
control system is  

  ∫Φ+Φ=
t

t

susBstxttxttA
0

)()(),({),(),,( 0000 )(⋅u  admissible }        (1.3.11) 

the vector-sum of the position of the uncontrolled motion (for 0=u ) starting at 0x  plus the 

attainable set from the origin. 
 
 
1.3.2 Attainability relation 
 
Consider an autonomous control system 

      ),( uxfx =& , Uu ∈           (1.3.12) 

satisfying the Caratheodory conditions. 
Given two points 0x , 1x  in ℵ  and two numbers 0t , 1t  in R, 10 tt < , we will say that 1x is 

attainable at time 1t  starting from 0x  at time 0t , if there exists an admissible control )(tu  

defined on ],[ 10 tt  with corresponding trajectory )(tx satisfying 00 )( xtx = , 11)( xtx = . We 

also say that 1x  is forwards reachable from 0x .  

Notice, both words "attainable" and "reachable" are sometimes used interchangeably, but here 
we will in general use "attainability" when the end-time is specified and "reachability" when 
any end-time may apply. 
Since for autonomous systems the attainability will depends only on 0x , 1x  and on the 

difference 01 tt − , we may refer mostly to 00 =t  stating that 1x  is attainable from 0x  at 1t .  

The following properties of the attainability relation are immediate. 

• For 1t , 2t  >0, if y is attainable from x at time 1t , and z is attainable from y at time 2t , then 

z is attainable from x at time 21 tt + . 
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• If y is reachable from x and z is reachable from y, then z is reachable from x. 
• Semigroup property of the attainability function: If 1t , 2t  >0, then 

      U
),(

221

1

),(),(
xtAy

ytAxttA
∈

=+ . 

A necessary and sufficient condition for the existence of a periodic solution through the point 
x is that x be attainable from itself at some positive time t, or (equivalently) that x be reachable 
from itself. Consider a control system (1.3.12) and a point ℵ∈0x . The set of all points ℵ∈x  

such that x is attainable from 0x  and conversely 0x  is attainable from x is called holding set 

from 0x  and denoted by )( 0xΗ : 

The intuitive meaning of a holding set is quite obvious: it is a subset of the state space such 
that "we can go" (if "we wish") from 0x  to any other point )( 0xx Η∈  and then "come back" 

to 0x . Since this "going and coming back" will take some finite positive time, we could then 

repeat this (if "we wish") indefinitely and stay within Η  forever. But once we left this 
holding set )( 0xΗ , we can never come back to 0x . 

The subset of ℵ  of all points x with 0)( =Η x  is called the transient set and denoted byΤ . x 
belongs to the transient set Τ  is there is no admissible solution starting at x and returning to x 
after some positive time t. 
Some properties of the holding sets are. 

• If both y and z belong to )(xΗ , then )(zy Η∈  and )(yz Η∈ . 

• If 0)( ≠Η x , then )(xx Η∈ . 

• If 0)( ≠Η x , then there is a periodic solution through x. 

The control system (1.3.12) determines a decomposition of the state space ℵ  into: (i) the 
transient set and (ii) all the holding sets, equivalent classes of the mutual reachability. 
 
 
1.3.3 Linear systems 
 
Before showing an example for the holding sets we will tell some words about the 
autonomous linear control systems. These are of the form 

     BuAxx +=& , Uu ∈ .           (1.3.14) 

The matrices A and B as well as the control set U must be constant. For constant A, the 
fundamental matrix of the homogeneous system Axx =&  is 

     ))(exp(),( 00 ttAtt −=Φ , 

where  

          ...
!32

)exp(
3322

++++= tAtA
AtIAt  

If the control is constant, the system can be solved elegantly. For 0=u  in (1.3.14) the 
solution of the differential equation 

       Axx =&             (1.3.15) 

is         00 ),()( xtttx Φ= . 
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If u=const. and the matrix A is nonsingular the equation (3.14) can be rewritten with the 
change of variables 

         BuAx 1−+=ξ , 

obtaining  

     ξξ ABuAxABuAxx =+=+== − )( 1&& , 

which is the same equation as (1.3.15). Hence, the solution is 00 ),()( ξξ ttt Φ=  in the new 

coordinates, and the geometric graph of the trajectories is the same as for the homogeneous 
system (1.3.15), but translated to the new origin 00 =ξ , which is BuAx 1

0
−−= . If A is 

singular but there exists a matrix C such that AC=B, the transformation of coordinates 
Cux +=ξ  will do the same as before. If such matrix C does not exist, then the trajectories of 

the system controlled with u=const. are not the translates of the trajectories of the 
homogeneous system. 

Example 1.3.2 (Stable node) 
Consider the control system 

      uxx +−= 11& ,   uxx +−= 22 2& ,    1≤u .         (1.3.16) 

Here the homogeneous system 

         11 xx −=& , 22 2xx −=&  

has a matrix A with two distinct real negative eigenvalues, hence, the origin is a stable node 
and the solutions are given by  

  texx −= )0(11 ,   texx 2
22 )0( −= . 

Hence 

       2
12 cxx =  

with c being the constant adjusting the initial condition. The trajectories are half-parabolas 
converting to the origin. 
We absorb the constant controls into the coordinates, by rewriting the system equations 

for 1=u  as  )1( 11 −−= xx& ,  )
2

1
(2 22 −−= xx& ; 

for 1−=u  as  )1( 11 +−= xx& ,  )
2

1
(2 22 +−= xx& . 

The parabolas convert to the points of attraction )
2

1
,1(  for 1=u  and )

2

1
,1( −−  for 1−=u . 

Starting at any initial point, we can choose to move along each of these two families of 
parabolas. We may switch at any time from one to the other family. 
Now we will find out which points x are reachable from a given 0x . Setting 1=u  for a while, 

the point )(tx  will drift asymptotically towards the center of attraction )
2

1
,1( . When it is near 

this point we may then switch to 1−=u , so that the moving point )(tx  will start moving 
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asymptotically towards )
2

1
,1( −− . And when it is near this point, we may of course switch 

back again and continue repeating this as many times as we wish.  
The conclusion is that once the point )(tx  is in the lunette limited by the two points of 
attraction and the corresponding arcs of parabola, it can never get out of it (it can not even 
reach its boundary in finite time). On the other hand, within this lunette it can go from any 
point to any other point. Therefore, the interior of the lunette is a holding set. 
 
It is important to observe that every vector-differential equation of the form 

       Axx =&  

can be transformed by a linear change of coordinates into a Jordan canonical form with the 
new matrix A diagonal or made of special blocks. In the case some of the eigenvalues of A are 
complex, one should use the real canonical form. 
Introducing the same change of coordinates to the control system 

            BuAxx +=& , 

 

 
 

matrix A will change into its canonical form. The matrix B will change into whatever new 
matrix comes out, but the discussion will be easier since A is canonical. 
 
 
1.3.4 Controllability 
 
If for a certain control system a point 1x is not reachable from another point 0x , this can be 

due to one of the following reasons: 
• the admissible controls are not strong enough to overcome the other "forces" of the 

system; 
• all admissible controls act in directions such that, no matter how strong is the control, 

))(,( txt  stays on some lower dimensional surface in 1+nR . For example consider the 
system 

   211 xxx +−=&   uxxx +−−= 212&       33 xx =&  with 1≤u . 

It decomposes into two uncoupled subsystems: the two first equations and the last one. No 
matter how we choose the control )(tu , the solution of the third equation 

          texx )0(33 =   
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will be unaffected. This means that we cannot control 3x  and this system will be called not 
controllable. 
Consider the control system with unbounded controls 

    BuAxx +=& ,  nRx ∈ ,   mRu ∈           (1.3.17) 

Let us find the attainable set from origin. With 00 =x  the solution is 

     ∫Φ=
t

dssBusttx
0

)(),()(   

and the attainable set, a linear subspace of nR , is 

    ∫Φ=
t

sBusttA
0

)(),({)0,(  )(⋅u  attainable}. 

If 1u  and 2u  are admissible controls with respective trajectories 1x  and 2x  starting at the 

origin, then 2211 ukuk +  is also an admissible control for any real 1k , 2k , and by linearity, the 

corresponding trajectory will be )()( 2211 txktxk + . The conclusion is that if 1x  and 2x  are 

attainable from the origin at time t, then any linear combination 2211 xkxk +  is also attainable 
at t. 
The linear control system (1.3.17) is controllable if for every 0>t  the attainable set is  

      nRtA =)0,( .            (1.3.18) 

This immediately implies that also nRxtA =),( 0  for any 0x . 

Denote by )(tM  the matrix 

          ∫ −Φ−Φ=
t

TT dsstBBsttM
0

)()()( .          (1.3.19) 

Theorem: A necessary and sufficient condition for system (1.3.17) to be controllable, is that 
the matrix M defined by (1.3.19) be positive definite, i.e. of full rank.  
An equivalent theorem is the following. 
Theorem: A necessary and sufficient condition for the controllability of the system (1.3.17) is 
that the controllability matrix 

           ],...,,,[ 12 BABAABB n−            (1.3.20) 

has maximum rank (i.e. rank n). 
 
 

1.4 Optimal control and related results 
 
 
1.4.1 Optimal control 
 
Consider the control system  

      ),,( uxtfx =& ,              (1.4.1) 

with a constant in time constraint 
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        Utu ∈)( .               (1.4.2) 

There may be an initial condition 

      00 )( xtx =  

and possible end-condition 

      ff xtx =)( . 

In order to optimize something, we define an objective functional (also called cost or gain 
functional) of type 

     dssusxsfttgJ
ft

t

ff ))(),(,(),(
0

0∫+=            (1.4.3) 

evaluated along the solution )(tx  corresponding to the control )(tu . The problem is to find (if 

it exists) the optimal control )(tu ∗  generating the optimal trajectory )(tx∗  such that the 

corresponding cost ∗J  is minimum (or maximum). This is called the problem of Bolza. 
If the term ),( ff ttg is absent and (4.3) is of the form 

           ∫=
ft

t

dssusxsfJ
0

))(),(,(0 ,             (1.4.4) 

it is called the problem of Lagrange. When the integral is absent, i.e. 

        ),( ff ttgJ = ,              (1.4.5) 

it is called the problem of Mayer. It can be seen that these problems are equivalent, in the 
sense that each of them can be rewritten as any other type of them. 
Quite different is the time optimal problem. 

     ),,( uxtfx = ,  Utu ∈)(  given, 

     00 =x , ff xtx =)(   given, minimize ft . 

Here       ∫=
ft

dtJ
0

1 .  

It is a Lagrange problem, but with the end-time not prescribed. We wish to drive, using an 
admissible control, )(tx  from the origin to the given target point fx  in minimal time. 

Once the optimal control problem had been reformulated with inequality constraints on the 
admissible controls, necessary conditions for optimality had to be found to replace the 
classical ones from the calculus of variations. This has achieved by Pontryagin with what is 
called the maximum principle. Here we state it only for a Mayer problem with linear cost 
functional. 
Consider the problem defined by 

  ),,( uxfx =& , Utu ∈)( , 0)0( xx = , maximize  )( ftxJ η= , (4.6) 

where nRx ∈ , mRU ⊂  compact, ),( uxf  continuously differentiable, with η  and ft  given. 

Assume that the admissible optimal control )(tu ∗  with corresponding optimal trajectory 
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)(tx∗  achieve the maximum of J. Then there exists a non-zero n-dimensional adjoined vector 
function )(tp  satisfying the adjoined differential equation 

      
)(),( tuutxxx

f
pp

∗∗ ==









∂
∂

−=&             (1.4.7) 

where 
)(),( tuutxxx

f

∗∗ ==









∂
∂

 is the jacobian of partial derivatives of the components of ),( uxf  

with respect of the components of x, evaluated at the optimal solution )(txx ∗= , )(tuu ∗= , 

such that for almost all t in the interval ],0[ ft  

    }))(),(().(max{))(),(().( Uututxftptutxftp ∈= ∗∗∗ .         (1.4.8) 

In addition, )(tp  should satisfy the end-condition 

       η=)( ftp .      (1.4.9) 

Condition (1.4.7) can be interpreted as follows. Once )(tp  is known, the optimal control 

)(tu ∗  should be chosen at each instant t as to maximize the scalar product )),(().( utxftp ∗ , 
hence the term "maximum principle". 
For linear control systems of the type 

      BuAxx +=& ,  Uu ∈  

the maximum principle applies in a particularly simple way. Here A
x

f =
∂
∂

 and the adjoined 

equation (1.4.7) becomes 

       pAp −=& . 

It does not depend on either )(tu  nor )(tx  and can be integrated independently of the 
optimization criterion. Once the general solution of the adjoined system is obtained, each 
value of η  in (1.4.9) will determine a particular solution )(tp . This is especially well adapted 

to determine the attainable set of a linear control system at a given final time ft .  

 
 
1.4.2 The existence of optimal control 
 
We will continue with an example. Consider the optimal control problem 

   
2

1 1 x

u
x

+
=& , 

2
2 1 x

u
x

+
=& , ]1,1[ +−∈u .         (1.4.10) 

Starting at the origin, 0)0()0( 21 == xx , we wish to minimize 

      )1(1xJ = . 

For 0=u , 021 == xx &&  is not desirable. For all other values of u, 

      1
1

2 ±=
x

x

&

&
, 
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hence, the trajectories are of the zig-zag type of slop 1± , as seen in figure.. Since 

     ds
x

u
x ∫ +

=
1

0 2
1 1

)1(    →     to be maximized. 

We wish to keep 1±=u  and also keep 2x  as small as possible. The best would be to keep 

02 =x , but this is not possible since the trajectories have to have constantly slope 1± . 
Therefore, to make J large, we should use 1)( ±=tu  and switch quite often, in order to obtain  

 
a zig-zag with )(2 tx  kept near zero. As more zig=zag's, as better the J. The limit would be to 

have 1=x&  and 0)(2 =tx  all the time, but this is impossible because it does not correspond to 
any admissible control. The conclusion is that, for any positive ε , values of ε−>1J  
 are possible to obtain, but 1=J  is impossible. Hence an optimal control does not exist.  The 
attainable set )0,1(A  is not closed, since it does not contain the point (1,0). More precisely, if 
we would have assumptions guaranteeing that )0,1(A  is compact set, then we could argue that 
there exists an optimal control and an optimal trajectory leading to this point. 
Since compact in Rn means closed and bounded, and the boundness of the attainable set 
usually follows from an upper bound of the admissible velicities x& , the crucial point is 

therefore to give some sufficient conditions to insure that the attainable set is closed. 

Theorem 1.4.1 Consider the control system 

     ),,( uxtfx =& , mRUu ⊂∈  

and assume that f satisfies the conditions: 

• nn RURIf →××:  is continuous in ),( ux  and integrable with respect to t for every 
),( ux , ℵ∈x , Uu ∈ ; 

• f is lipschitz in x, i.e. )2()1()2()1( ),,(),,( xxKuxtfuxtf −≤− ; 

• for all Uu ∈ , )()(),,( xtuxtf ψµ ⋅≤ ,where )(tµ  is integrable in each finite interval 

and )( xψ  is bounded in any bounded region of nR ; 

• the admissibility condition: )(tu  is measurable with values in U; 

• the convexity condition: ),,({),,( uxtfUxtf = }Uu ∈  is convex. 

Then the attainable set ),( 0xtA  is bounded and closed, hence compact. The last convexity 

assumption is violated in the example. 
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Theorem 1.4.2 The attainable set of a linear control system, assuming U convex, is convex. 

Theorem 1.4.3 Assume two control systems with the same matrices A, B but different control 
sets 1U  and 2U . If both control sets have the same convex hull: 

      )()( 21 UcoUco = . 

Then the attainable sets are the same 

      )0,()0,( 21 tAtA = . 

This result is remarkable. From it follows that in all the linear systems where the control set is 
the interval ]1,1[ +−=U , this could be replaced by the set of just the two end-points 

}1;1{ +−=U . 
In the more general case of U being a convex polygon, it means that any point attainable with 
controls taking values in this polygon, can also be attained with controls taking values only on 
the vertices of U. This has been called bang-bang principle. 
 
 
1.4.3. Invariant sets 
 
Invariant sets are well known in the theory of dynamical systems. They also play an 
important role for control systems. The fundamental difference in both cases is that in 
dynamical systems the starting point )0(x  determines uniquely the whole past and future 
trajectory )(tx , while for control systems there is a whole set of trajectories passing through a 
given )0(x . This immediately induces two ways to apply any property to control systems. We 
denote these two possibilities by strong, if the property applies to all admissible trajectories, 
and by weak if the property applies to some trajectories (at least one). 
We refer to autonomous control system of the type 

      ),( uxfx =& , Uu ∈ ,          (1.4.11) 

where f satisfies the conditions of the Theorem 1.4.1. 

Definition 1.4.1 Let S be a subset of the state space ℵ . The set is said to be strongly 
invariant for a given control system, if for every Sx ∈0 , all admissible trajectories )(tx  

through 0)0( xx =  remain in S for all future, 

    Sx ∈)0(  implies Stx ∈)(  for all 0≥t         (1.4.12) 

Definition 1.4.2 Let S be a subset of the state space ℵ . The set is said to be weakly invariant 
for a given control system, if for every Sx ∈0  there exists an admissible trajectory )(tx  with 

0)0( xx = , remaining in S for all future times.  

In other words: starting at any 0x  in S, we can, by choosing a suitable admissible control, 

make )(tx  remain in S forever.  For control systems, for which the attainable set ),( 0xtA is 

compact, and for closed sets S, this definition is equivalent to ask that the intersection 
0),( 0 ≠∩ SxtA  for every 0≥t . 

The case that the set S in the above definitions is a single point is of particular importance. 
Strongly invariant points appear only rarely in applications. They can be called fixed points.  
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The weakly invariant points are usually called rest points. For the system of type (1.4.11) 
they are the points rx  such that the set  

      Uu ∈{  }0),( =uxf r            (1.4.13) 

is not empty. If that is the case, we just need to choose one such solution of (1.4.13) as 
constant control )(tu , getting 0=x& and remaining at the rest point forever. 
To find the location of the rest points is in many cases the first step for analyzing the behavior 
of a control system. 
 
 
1.4.4 Stability of invariant sets 
 
The stability properties of invariant sets are also well known from the theory of dynamical 
systems. Again, they can be applied to control systems in both a strong and a weak form. 
For a set S, a neighborhood V of S can be understood in a topological sense that 

           closure of S ⊂  interior of V. 

Definition 1.4.3 Let S be a bounded strongly invariant set. Then S is called strongly stable if, 
given any neighborhood V of S, there exists a neighborhood W of S such that if 0x  is in W, 

then the forward reachable set VxR ⊂+ )( 0 . 

It follows that, under these conditions, the attainable set VxtA ⊂),( 0  for every 0>t . In less 

precise terms: starting sufficiently near S, any trajectory will always remain near S. 

Definition 1.4.4 Let S be a bounded weakly invariant set. Then S is called weakly stable if, 
given any neighborhood V of S, there exists a neighborhood W of S such that if 0x  is in W, 

then there exists an admissible trajectory )(tx  though 0)0( xx = , remaining in V for all future 

times 0>t . 

In less precise terms: starting at any point sufficiently near S, we can remain (if we wish) near 
S forever. 

Definition 1.4.5 Let S be a bounded strongly invariant set. Then S is called strongly 
asymptotically stable if it is strongly stable and there exists a neighborhood W of S such that 
for any admissible trajectory )(tx  starting at 0)0( xx = , 

∞→t
lim  distance 0)),(( =Stx . 

Definition 1.4.6 Let S be a bounded weakly invariant set. Then S is called weakly 
asymptotically stable if it is weakly stable and there exists a neighborhood W of S such that 
for any Wx ∈0 , there exists an admissible trajectory )(tx  starting at 0)0( xx = , with 

∞→t
lim  distance 0)),(( =Stx . 

Definition 1.4.7 Let S be a bounded strongly invariant set. Then S is called strongly finite 
stable if it is strongly stable and there exists a neighborhood W of S such that for any 
admissible trajectory )(tx  starting at 0)0( xx = , 
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Stx ∈)(  for some finite 0>t . 

Definition 1.4.8 Let S be a bounded weakly invariant set. Then S is called weakly finite stable 
if it is weakly stable and there exists a neighborhood W of S such that for any Wx ∈0 , there 

exists an admissible trajectory )(tx  starting at 0)0( xx = , such that 

     Stx ∈)(  for some finite 0>t . 

The finite type of stability does not occur in the theory of dynamical systems, since it is ruled 
out by the uniqueness of a trajectory through a given invariant point 0x . Here, in control 

systems, it is possible and indicates an even higher degree of stability than the asymptotic 
stability. 
 
 
1.4.5 Attractors and repellers 
 
We consider control system of the type (1.4.11). 

Definition 1.4.9 A bounded set S is called a strong attractor, if it has a neighborhood V such 
that Vx ∈0  implies  

      
∞→t

lim  distance 0)),(( =Stx  

for every admissible trajectory )(tx  starting at 0)0( xx = . 

Definition 1.4.10 A bounded set S is called a weak attractor, if it has a neighborhood V such 
that Vx ∈0  implies  

      
∞→t

lim  distance 0)),(( =Stx  

for some admissible trajectory )(tx  starting at 0)0( xx = . 

An even stronger version of attraction may require the trajectories not only to approach S, but 
actually to enter this set. We call this absorption. 

Definition 1.4.11 A bounded set S is called a strong repeller, if it has two neighborhoods V 
and W, such that Vx ∈0  but not in S implies that for every admissible trajectory )(tx  starting 

at 0)0( xx =  there is a 0>∗t  such that  

           Stx ∉)(   for all 0>t  

and 

           Wtx ∉)(    for all ∗> tt . 

Definition 1.4.12 A bounded set S is called a weak repeller, if it has two neighborhoods V 
and W, such that Vx ∈0  but not in S implies that there exists an admissible trajectory )(tx  

starting at 0)0( xx =  and a 0>∗t  such that  

           Stx ∉)(    for all 0>t  
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and 

           Wtx ∉)(    for all ∗> tt . 

 
 
1.4.6 Attracting, repelling and saddle holding sets 
 
In some way, holding sets are for control systems what critical points are for dynamical 
systems. We can therefore expect them to also show behavior of attractors, repellers and 
saddles. We can strengthen the attracting property to the absorbing one. Let us look about the 
invariance and stability properties of the holding sets. 

Proposition 1.4.1 Every holding set is forward weakly invariant. 

Proposition 1.4.2 If a holding set is weakly absorbing, then it is forwards strongly invariant. 

Repelling holding sets are not exactly the opposite of attracting ones. They are unstable, but 
they do not seem to have otherwise interesting properties. 
The typical saddle-behavior of critical points of dynamical systems consists in the existence 
of some trajectories tending to the saddle point and some going away from it. Similar 
behavior for control systems can be defined in various ways.  
 
Example 1.4.1 (Strongly attracting holding set) 
Let us retake the example 

    uxx +−= 11& ,  uxx +−= 22 2& , 1≤u         (1.4.14) 

The extreme rest points )
2

1
,1(  and )

2

1
,1( −− , and the whole set of rest points is the line 

segment with these end-points. The lunette determined by the trajectories going from each of 
the extreme rest points to the other, is a forward invariant set. The holding set from the origin 
is the interior of this lunette. Besides this, there are actually only two more holding sets: the 
two extreme rest points, )(tx  can stay indefinitely, but once it goes away it never can come 
back. 
 

 
 
The best way to imagine this holding set being generating is as follows. Any point reachable 
from the origin can be reached in a time optimal way with bang-bang control 1)( ±=tu  with 
at most one switching point. Hence we can start at the origin with either u=1 or u=-1, and, 
after an arbitrary time, switch to the opposite control and keep it until the end. This holding 
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set is strongly attracting. But it is not strongly absorbing, since there are nearby trajectories, 
for example the two extreme rest points, never entering the holding set. 

Example 1.4.2 (Saddle holding set) 
Let us take the system 

    uxx +−= 11& ,  uxx += 22& ,  1≤u , 

with eigenvalues 1 and -1.Without control there is a saddle point at the origin. For u=+1 there 
is a rest point at (1,-1), and for u=-1 there is a rest point at (-1,1). The points of the line 
segment of these end-points are all rest points for values of u inbetween 1 and -1. The 
horizontal component of the motion is an attraction of the origin or corresponding rest point, 
while the vertical component of the motion is a repulsion by the origin or rest point. 
 

 
 
Observing how the trajectories of this system are described, and in particular their relation 
with the extreme trajectories (for 1±=u ), it is easy to recognize that the interior of the square 
of vertices ( 1,1±± ) is the holding set from the origin. This holding set is a sink-source saddle: 
trajectories enter on the two sides and leave on the top and bottom. 
 
 
1.4.7 Periodic orbits  
 
The problem of periodic solutions for control systems is basically trivial. 
In every non-empty holding set there is at least one periodic orbit, as we are able to "come 
back" to any starting point in positive time. Except in degenerate cases (when the holding set 
is a single isolated periodic orbit) there are, indeed, infinitely many distinct periodic orbits in 
any holding set. On the other hand, any periodic orbit is necessary (part of) a holding set. 
Hence the holding sets determine the periodic orbits and conversely. 
It is often the case that a dynamical system has an isolated periodic trajectory. Converting this 
dynamical system into a control system, the single periodic trajectory may then "expand" into 
a "tube" (or "ring") of periodic trajectories, since we may be able to produce small 
perturbations of the original trajectory and still come back to the starting point. It is 
interesting to observe that such a tube of periodic orbits can be a holding set without any rest 
points. 

Example1.4.3 (Stable cycle) 
Consider in polar coordinates ),(θρ , 

    2ρρρ −=& ,  1=θ& . 
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This dynamical system has an unstable critical point at the origin and the stable orbit 1=ρ . 
Converting into a control system 
 

 
 

    u+−= 2ρρρ& , 1=θ& ,  
5

1
)( ≤tu , 

we find that the unstable origin becomes an unstable holding set (of radius approximately 
1/5), while the periodic orbit widens to a ring ( of approximate width 2/5). 
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Chapter 2  
 
Global optimal methods 
 
 
2.1 The Hamilton-Jacobi theory 
 
 
2.1.1 Introduction 
 
In this chapter will be considered controlled systems which are continues time, finite 
dimensional dynamical systems with initial state 0x  in initial time 0t . 

Let the model of the controlled plant is described by the differential equation 

    ))(),(,()( tutxtftx =&              (2.1.1) 

where nT
n Rxxx ∈= ),...,( 1  is the state vector of the system; m

m Uuuu Ω⊆∈= ),...,( 1  is the 

control vector, U  is a given set of admissible piecewise continues input functions to the 
system; Tt ∈  is the time , ],[ 0 fttT =  is the time interval of the system’s functioning; f  is 

continuously differentiable vector-function,  
T

n uxtfuxtfuxtf )),,(),...,,,((),,( 1=  

and  
nn RURTuxtf →××:),,( . 

Here nR  is n -dimensional Euclidian space. The boundary condition for the equation (2.1.1) 
is  

   00)( xtx =               (2.1.2) 

and expresses that the initial state is given at a known initial time. The final time is 
determined as the moment when the system reaches a given set },),{( 0

nRxttxt ∈>⊆Γ , of 

admissible final events, i.e. 

Γ∈))(,( ff txt              (2.1.3) 

Let us define a set of admissible processes ),( 00 xtD  as a set of triads ))(),(,( ⋅⋅= uxtd f , where 
nRx ∈⋅)(  is continuous and piecewise differentiable function and Uu ∈⋅)( , satisfying eq. 

(2.1.1)-(2.1.3). On this set we define a performance index )(dI  to be minimized as the sum of 
an integral type term with a term which is a function of the final event 

∫ +=
ft

t

ff txtFdttutxtfdI
0

))(,())(),(,()( 0            (2.1.4) 
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where ),,(0 uxtf  and ),( xtF f  are given continuously differentiable functions. The 

performance index depends on the initial state, on the initial and final times and on the whole 
time history of the state and the control variables, i.e. ))(),(,,,( 00 ⋅⋅ uxxttI f . 

Problem 2.1.1 (Optimal control problem)  
Determine a triad ))(),(,( **** ⋅⋅= uxtd f  such that  

)(min)(
),(

*

00

dIdI
xtDd∈

= .        (2.1.5) 

 
 
2.1.2 Global sufficient conditions 
 
Let denote with ))(,,;( 00 ⋅uxttϕ  the solution at time t of equations (2.1.1)-(2.1.2). 

Definition 2.1.1 An admissible control relative to ),( 00 xt  for the system (2.1.1) and the set Γ  

is the control mUu Ω⊆∈⋅)(  defined on the interval ],[ 0 ftt , 0tt f ≥  such that  

Γ∈⋅)))(,,;(,( 00 uxttt ff ϕ . 

Definition 2.1.2 An optimal control )(0 ⋅u  relative to ),( 00 xt  for the system (2.1.1), 

performance index (2.1.4) and the set Γ  is an admissible control on the interval ],[ 0
0 ftt , 

0
0 tt f ≥  such that 

))()),(,,;(,())()),(,,;(,( 00
00

00
0 ⋅⋅⋅≤⋅⋅⋅ uuxttIuuxttI ff ϕϕ . 

Within the frame of optimal control theory a function built up from the system to be 
controlled and the integral part of the performance criterion plays a fundamental role. This is 
the Hamiltonian function.  

Definition 2.1.3 The Hamiltonian function relative to the system (2.1.1) and the performance 
index (2.1.4) is the function  

),,('),,(),,,( 0 uxtfuxtfuxtH λλ +=            (2.1.5) 

where nR∈λ . 

Definition 2.1.4 The Hamiltonian function is said to be regular if, as a function of u, it admits 
for each 0tt ≥ , x, λ  a unique absolute minimum ),,(0 λxtuH , i.e. 

   nn
HH RttRxxtuuuxtHxtuxtH ∈∀≥∀∈∀≠∀< λλλλλ ,0
00 ,),,,(),,,,()),,,(,,(    (2.1.6) 

Definition 2.1.5 Let the Hamiltonian function be regular. The function 0
Hu , which verifies the 

equation (2.1.6) is said to be the H-minimizing control. 

For regular Hamiltonian function, the partial differential equation  
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0))'
),(

(,)'
),(

(,,(,,(
),( 0 =

∂
∂

∂
∂+

∂
∂

z

ztV

z

ztV
ztuztH

t

ztV
H           (2.1.7) 

is the Hamiltonian-Jacobi equation (HJE). 
The following theorem gives a sufficient condition of optimality. 

Theorem 2.1.1 Let the Hamiltonian function (2.1.5) be regular and 0u  defined on the interval 
],[ 0

0 ftt , 0
0 tt f ≥ , be an admissible control relative to the ),( 00 xt , so that Γ∈))(,( 000

ff txt , where 

))(,,;()( 0
00

0 ⋅⋅=⋅ uxtx ϕ . Let V be a solution of eq. (2.1.7) such that:  

(i) it is continuously differentiable; 
(ii)  Γ∈∀= ),(),,(),( ztztFztV ; 

(iii)  0
0)(

000 ),)'
),(

(),(,()( 0 ttxzH ttt
z

ztV
txtutu ≤≤

∂
∂=

=
. 

Then it follows that 

 (j) )(0 ⋅u  is an optimal control relative to ),( 00 xt ; 

 (jj) ),())(,),(,,( 000
000

00 xtVutxxtI f =⋅⋅ . 

Theorem 2.1.1 supplies only sufficient optimality condition. For instance, if point (iii) fails to 
hold corresponding to a certain solution of the HJE, we cannot claim that the control at hand 
is not optimal. This theorem provides a mean of checking only whether a given control is 
optimal: however it can be restated to allow us to determine an optimal control. This is shown 
in the following lemma. 

Corollary 2.1.1 Let the Hamilton function (2.1.5) be regular and V be a solution of the HJE 
(2.1.7) such that: 

(i) it is continuously differentiable; 
(ii)  Γ∈∀= ),(),,(),( ztztFztV . 

If the equation  

))]'
),(

[),(,(),(,()( )(
0

txzh z

ztV
txtutxtftx =∂

∂=& ,  00)( xtx =  

admits a solution cx  such that, for some 0t≥τ  Γ∈))(,( ττ x , then 

)]'
),(

[),(,()( )(
00

txzch cz

ztV
txtutu −∂

∂=  

is an optimal control relative to ),( 00 xt . 
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2.2 The LQR problem 
 
2.2.1 Introduction 
 
The linear quadratic regulator (LQR) problem is the most celebrated optimal control problem. 
It refers to a linear system and a quadratic performance index according to the following 
statement 

Problem 2.2.1 For the system 

00)(

)()()()()(

xtx

tutBtxtAtx

=
+=&

,             (2.2.1) 

where 0t  and 0x  are given, find a control which minimizes the performance index 

    })()(')]()()(')()()('[{
2

1

0

∫ ++=
ft

t

tSxtxdttutRtutxtQtxJ .          (2.2.2) 

The final time ft  is given, while no constraints are imposed on the final state )( ftx . In 

equations. (2.2.1), (2.2.2) )(⋅A , )(⋅B , )(⋅Q , )(⋅R  are continuously differentiable functions and 

0)(')( ≥= tQtQ , 0)(')( >= tRtR , for ],[ 0 fttt ∈∀ , 0'≥= SS . 

LQR problem can arise in a fairly spontaneous way. Consider for example a dynamic system 
Σ  and denote by )(⋅nx  its nominal state response one wishes to obtain. Let )(⋅nu  be the 

corresponding input when the system exhibits these nominal conditions nΣ=Σ . Uncertainties 

in the system description and disturbances acting on the system lead to a closed loop 
configuration. The controller RΣ , we have to design contains a system K with input the 

deviation xδ  of the actual state from nx  that supplies the correction uδ  to nu  in order to 

make xδ  small. There is no requirement for large corrections uδ  and the objective for the 
desired controller can be stated in terms of looking for the minimization of a quadratic 
performance index like the one given in eq. (2.2.2). Therefore, if the deviations xδ  and uδ  are 
small and Σ  is described to be ),,( uxtfx =&  with f sufficiently regular, the effect of xδ  and 

uδ  can be evaluated through the linear equation 

u
u

utxtf
x

x

tuxtf
x tuu

n
txx

n
nn

δδδ )()(

)),(,())(,,(
=− ∂

∂+
∂

∂=& . 

Problem 2.2.1 is a particular case of Problem 2.1.1 and can be approached via the Hamilton-
Jacobi theory. According to circumstances, LQR problem can be stated on a finite or infinite 
time interval. 
 
 
2.2.2 Finite control horizon 
 
The following result holds for the LQR problem over a finite horizon 

Theorem 2.2.1 The problem 2.2.1 admits a solution for any initial state 0x  and for any finite 

control interval ],[ 0 ftt . The solution is given by the control law 
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xtPtBtRxtuc )()(')(),( 10 −−= ,            (2.2.3) 

where the matrix P solves the differential Riccati equation (DRE) 

)()()(')()()()()(')()()( 1 tQtPtBtRtBtPtPtAtAtPtP −+−−= −&          (2.2.4) 

with boundary condition  

    StP f =)( .             (2.2.5) 

The minimal value of the performance index is  

00000
0 )('

2

1
),( xtPxxtj = .     

Theorem 2.2.1 gives the solution to Problem 2.2.1 in terms of optimal control law. If the 
optimal control 0u  is necessary for a given initial state, it is sufficed to find a solution 0x  of 
the equation 

xPBBRAx )'( 1−−=&  with   00)( xtx = , 

that computes the response of the optimal closed loop system (2.2.1),(2.2.3) and the optimal 
control 

)()()(')()( 010 txtPtBtRtu −−= . 

Remark 2.2.1 The value of the coefficient in front of the performance index (2.2.1) is not 
important. It can be seen as a scale factor only.  

Remark 2.2.2 Theorem 2.2.1 states that the solution of the LQR problem is unique.  

Remark 2.2.3 A more general statement of the LQR problem can be obtained by adding 
linear functions of the control and/or state variables into the performance index, which thus 
becomes 

)]('2)()('[
2

1
)]()('2)()('2)()()(')()()('[

2

1

0

fff

t

t

txmtSxtxdttutktxthtutRtutxtQtxJ
f

+++++= ∫ , 

where Q, R, S are as in Problem 2.2.1 and h, k are vectors of continuously differentiable 
functions. The resulting optimal control admits a solution for all initial states 0x  and for all 

finite control intervals ],[ 0 ftt . The solution is given by the control law  

)}()]()()[('){(),( 10 tktwxtPtBtRtxuc ++−= − , 

where P is the solution of (2.2.4), (2.2.5), while w is the solution of the linear differential 
equation 

hkPBRwPBBRAw −+=−= −− 11 )''(&  with mtw f =)( . 

The optimal value of the performance index is 

)()(')('
2

1
),( 00000000

0 tvxtwxtPxtxJ ++= , 

where v is the solution of the linear differential equation 
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)'()''(
2

1 1 kwBRkwBv ++= −&   with  0)( =ftv . 

Remark 2.2.4 A different extension of the LQR problem consists in adding the term 
)()()('2 tutZtx  to the integral part of the performance index, where Z is a continuously 

differentiable function. Notice that the presence of this new term may substantially modify the 
nature of the problem, as the assumptions in Problem 2.2.1 are no longer sufficient to 
guarantee the existence of a solution. In fact, let 

xZRuv ': 1−+=  

so that the system description and the performance index become 

BvxABvxZBRAx c +=+−= − :)'( 1&  

RvvxQxRvvxZZRQxRuuZuxQxx c '':')'('''2' 1 +=+−=++ − . 

Thus, the original problem is transformed into a customary problem where, however, the 
matrix cQ  might no longer be positive semidefinite. Hence, the existence of the solution of 

the DRE for arbitrary finite intervals is not ensured unless a further assumption of the kind 

0,0
'

>≥







R

RZ

ZQ
 

is added. Anyway, if the DRE 

ccc QPBPBRPAPAP −+−−= − '' 1&   with   StP f =)(  

admits a solution over the interval ],[ 0 ftt  also when cQ  is not positive semidefinite, then the 

control law 

xtZtPtBtRtxuc )](')()(')[(),( 10 +−= −  

is optimal. 

Remark 2.2.5 The assumptions on the sign of Q and S are conservative. When these 
assumptions are not met with, there are cases where the DRE still admits a solution and cases 
where the solution fails to exists over the whole given finite interval.  

Remark 2.2.6 (Tracking problem) A third extension of the LQR problem calls for adding to 
the controlled system an output 

)()()( txtCty =  

and considering the performance index 

)]()([ˆ)](')('[
2

1
)}()()(')]()()[(ˆ)](')('{[

2

1

0

ffff

t

t

ttySttydttutRtuttytQttyJ
f

µµµµ −−++−−= ∫ . 

Here C, 0'ˆˆ >= QQ  and 0'>= RR  are continuously differentiable functions, 0'ˆˆ >= SS  and µ  
is a vector of given continuous functions. The aim is thus to make some linear combinations 
of the state variables behave in the way specified by µ . This optimal control problem admits 

a solution for each finite interval ],[ 0 ftt , initial state )(0 tx  and )(⋅µ . The solution is given by 

the control law 
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)]()()[(')(),( 10 twxtPtBtRtxuc +−= − ,           (2.2.6) 

where P is the solution of the DRE 

CQCPBPBRPAPAP ˆ''' 1 −+−−= −&  with )(ˆ)(')( fff tCStCtP = ,          (2.2.7) 

while w is the solution of the differential equation  

µQCwPBBRAw ˆ')''( 1 +−−= −&  with   )(ˆ)(')( fff tStCtw µ−= .         (2.2.8) 

The optimal value of the performance index is 

    )()(')('
2

1
),( 00000000

0 tvxtwxtPxtxJ ++= ,           (2.2.9) 

where v is the solution of the differential equation  

)ˆ'''(
2

1 1 µµ QwBBRwv −= −&   with )(ˆ)('
2

1
)( fff tSttv µµ=         (2.2.10) 

Remark 2.2.7 The tracking problem can be set also for systems which are not strictly proper, 
that is systems where the output variable is given 

)()()()()( tutDtxtCty +=  

where C and D are matrices of continuously differentiable functions. The performance index 
is 

dttutRtuttytQtttJ
ft

t

)}()(ˆ)(')]()()[(ˆ)](')('{[
2

1

0

+−−= ∫ µµ , 

where both matrices Q̂  and R̂  are symmetric, positive definite, continuously differentiable 
and µ  is a given continuous function. The adopted performance index is purely integral. This 
choice simplifies the subsequent discussion without substantially altering the nature of the 
problem. The solution is given in terms of the control law 

)}()()(')]()(')()(ˆ)('){[(),( 10 tktwtBxtPtBtCtQtDtRtxuc ++−= −  

where RDQDR ˆˆ': += , µQDk ˆ': −= , P solves the DRE 

QPBPBRPAPAP cc −+−−= − '' 1&   with  0)( =ftP  

and w is the solution of the equation 

hkPBRwPBBRAw c −+−−= −− 11 )''(&   with  0)( =ftw . 

In these two differential equations  

CQDDRQQCQ )ˆ'ˆˆ(': 1−−= , CQDBRAAc
ˆ': 1−−= , µ)ˆ'(ˆ': 1 IQDDRQCh −= − . 

The optimal value of the performance index is 

∫+++=
ft

t

dttQttvxtwxtPxxJ
0

)(ˆ)('
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1
)()(')('

2

1
)( 0000000

0 µµ  

Where v solves the equation 
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)'()''(
2

1 1 kwBRkwBv ++= −&   with  0)( =ftv . 

Remark 2.2.8 Frequently it is also convenient to prevent the first derivative of the control 
variable from taking on high values. This requirements can be cast into the problem 

formulation by adding to the integral part of the performance index the term )()(ˆ)( tutRtu &&  . If 

the matrix R̂  is positive definite and continuously differentiable, the problem can be brought 
back to a standard LQR problem by viewing u as a further state variable satisfying the 
equation 

)()( tvtu =&  

and letting v be a new control variable. Thus, the given problem is equivalent to the LQR 
problem defined on the system  

)(ˆ)(ˆ)(ˆ)(ˆ tvBtxtAtx +=&  

and the performance criterion 

)(ˆˆ)('ˆ)](ˆ)(')(ˆ)(ˆ)('ˆ[ ff txStxdttvRtvtxtQtxJ ++= ∫ , 

where [ ]')(')(':)(ˆ tutxtx = , 
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The solution is given by the control law 

utKxtKxtPBtRv uxc )()(:ˆ)(ˆ'ˆ)(ˆ 10 +=−= − , 

P̂  being the solution of the DRE 

QPBRBPPAAPP ˆ'ˆˆˆ'ˆˆ 1 −+−−= −&       with     StP f
ˆ)( = . 

The resulting controller is no longer a purely algebraic system as in the standard LQR context 
but rather a dynamic system the order of which equals the number of the control variables.  

Remark 2.2.9 The LQR problem can be stated also in a stochastic framework by allowing 
both the initial state and the input to the system to be uncertain. More precisely, assume that 
the controlled system is described by 

00)(

)()()()()()(

xtx

tvtutBtxtAtx

=
++=&

, 

where v is a zero mean Gaussian white noise with intensity V and 0x  is a Gaussian random 

variable with expected value 0x  and variance matrix 0Π . Furthermore, it is assumed that 0x  

is independent from v. The performance index to be minimized is  












++= ∫

ft

t

ffs tSxtxdttutRtutxtQtxEJ
0

)()(')]()()(')()()('[ , 
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where 0≥Q , 0≥S  and 0>R . If the state can be measured then the solution of the problem 
is constructed by the same control law which is optimal for its deterministic version (2.2.3)-
(2.2.5). In fact, corresponding to the control law xtKtxu )(),( =  the value taken by the index 

sJ  is 

])()')(([
0

0000 ∫++Π=
st

t

KKs dttVPxxtPtrJ . 

Matrix KP  is the solution of the Lyapunov differential equation 

)'()'()( RKKQPBKABKAPP +−+−+−  with StP f =)( . 

If 0=V  and 00 =Π  then 000000 )(')(' xtPxxtPx K ≥ , where P is the solution of (2.2.4),(2.2.5). 

Since 0x  and 0t  are both arbitrary, it follows that )()( tPtPK ≥ , ],[ 0 fttt ∈ . Obviously 

)()( ⋅=⋅ PPK  when PBRK '1−−=  so that sJ  is minimized by this choice of K. Indeed, 

][][ ∆≥∆ PtrPtr K  for all 0'≥∆=∆  (or 0])[( ≥∆− PPtr K ) since the eigenvalues of the product 
of two positive semidefinite matrices are real and nonnegative. 
 
 
2.2.3 Infinite control horizon 
 
By no means can the linear-quadratic optimal control problem over an infinite horizon be 
viewed as a trivial extension of the problem over a finite horizon, which has been considered 
to some extent in the previous section. As a matter of fact, the assumption which have proved 
to be sufficient in the later case are no longer such in the former one.  
Problem 2.2.1 will not be discussed for ∞=ft  and 0=S . This particular choice for S is 

justified mainly by the fact that in the most significant class of LQ problems over an infinite 
horizon, the state asymptotically tends to zero and a nonintegral term in the performance 
index would be useless. The LQ problem over an infinite horizon is therefore stated in the 
following way.  

Problem 2.2.2. (Linear-quadratic problem over an infinite horizon)  
Given the system 

       
00)(

)()()()()(

xtx

tutBtxtAtx

=
+=&

          (2.2.11) 

where 0x  and 0t  are specified find a control which minimizes the performance index 

∫
∞

+=
0

)]()()(')()()('[
2

1

t

dttutRtutxtQtxJ  

The final state is free and )(⋅A , )(⋅B , )(⋅Q , )(⋅R  are continuously differentiable functions; 

further 0
/ ,0)()( tttQtQ ≥∀>=   

A solution of this problem is provided by the following theorem. 
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Theorem 2.2.2 Let the system (2.2.11) be controllable for each 0tt ≥ . Then Problem 2.2.2 

admits a solution for each initial state 0x  which is specified by the control low 

          xtPtBtRtxuc )()(')(),(
_

10 −−=           (2.2.12) 

where  

     ),(lim:)(
_

f
t

ttPtP
j ∞→

= ,          (2.2.13) 

),( ftP ⋅  being the solution of the differential Riccati equation 

        QPBPBRPAPAP −+−−= − '' 1
.

          (2.2.14) 

satisfying the boundary condition 
∞<<= fff ttttP 0,0),( .          (2.2.15) 

Further, the optimal value of the performance index is  

  00

_

000
0 )('

2

1
),( xtPxtxJ =           (2.2.16) 

 
 
2.2.4 The optimal regulator 
 
Due to the importance of the results and the number of applications, the LQ problem over an 
infinite horizon when both the system and the performance index are time-invariant, that is 
when A, B, Q, R are constant matrices is particularly meaningful. The resulting problem is 
usually referred to us the optimal regulator problem and apparently  is a special case of the 
previously considered LQ problem over an infinite horizon. However, it is worth discussing it 
in detail since independence of data from time implies a substantial simplification of the 
relevant results, making their use extremely simple. Thus the problem at hand is 

Problem 2.2.3. (Optimal regulator problem).  
For the time-invariant system  

      
0

.

)0(

),()()(

xx

tButAxtx

=
+=           (2.2.17) 

where 0x  is given, find a control that minimizes the performance index 

    ∫
∞

+=
0

2
1 )]()()(')()()('[ dttutRtutxtQtxJ          (2.2.18) 

The final set is unconstrained and 0/ ≥= QQ , 0/ >= RR .  

Observe that, thanks to time-invariance, the initial time has been set to 0 without loss of 
generality. The following result holds for the problem above.  

Theorem 2.2.3 Let the pair ),( BA  be reachable. Then the Problem (2.2.3.) admits a solution 

for each 0x . The solution is specified by the control low  
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        xPBRxucs

_
10 ')( −−=           (2.2.19) 

where 0'
__

≥= PP  solves the algebraic Riccati equation (ARE) 

0'' 1 =+−+ − QPBPBRPAPA          (2.2.20) 

and is such that  

),(lim
_

f
t

ttPP
f ∞→

= , 

),( ftP ⋅  being the solution of the differential Riccati equation QPBPBRPAPAP −+−−= − '' 1
·

 

with boundary condition 0),( =ff ttP . Further, the optimal value of the performance index is  

          0

_

00
0 '

2

1
)( xPxxJ =           (2.2.21) 

Remark 2.2.11 (Control in the neighborhood of an equilibrium point)  
From a particular point of view the importance of the optimal regulator problem is 
considerably enhanced by the discussion at the beginning of this chapter. Indeed equation 
(2.2.17.) can be seen as resulting from the linearization of the controlled system about an 
equilibrium state, say nξ . For this system the state ξ  is desired to be close to such a point, 

without requiring, however, large deviations of the control variables η  from the value nη  

which, in nominal conditions, producesnξ . In this perspective, x and u are with reference to 

the quoted equation, the state and control deviations, respectively, and the meaning of the 
performance index is obvious. Further, should the control low (2.2.19) force the state of 
system (2.2.17) to tend to 0 corresponding to any initial state, than it would be possible to 
conclude that the system has been stabilized in the neighborhood of the considered 
equilibrium.  

Theorem 2.2.4 Assume that the pair ),( BA  is reachable and let aP  be any element of the set 

P. Then 0
_

≥− PPa .  

Lemma 2.2.1 Let Q be a symmetric positive semidefinite matrix and 1C  and 2C  two distinct 
factorizations of it. Let A be a square matrix with the same dimension as Q. Then the 
unobservable subspace of the pair ),( 1CA  coincides with the unobservable subspace of the 

pair ),( 2CA .  

Theorem 2.2.5 Problem 2.2.3 admits a solution for each initial state 0x if and only if the 

observable but unreachable part or the triple ),,( QBA  is asymptotically stable.  

Remark 2.2.12 (Decomposition of the ARE)  
If the triple ),,( CBA  is not minimal, the ARE to be taken into account simplifies a lot. In 
fact, the canonical decomposition of the triple induces a decomposition of the equation as 
well, thus enabling us to set some parts of the solution to zero. More precisely, assume that A, 
B and C are already in canonical form, namely 
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and partition matrix P according to letting  
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P . 

From the differential equations for the iP ’s it follows that 9,8,6,4,3,2,1,0),( ==⋅ itP fi  while 

the remaining blocks solve the three equations  

1152
1

2555555

.

''' CCPBRBPPAAPP −+−−= − , 

216572
1

255977

.

')''( CCAPPBRBPAAPP −−−−−= −  

2272
1

27766710991010

.

'''''' CCPBRBPPAAPPAAPP −+−−−−= −  

which sequentially can be managed. The only nonlinear equation is the first one, which 
already is the Riccati equation for Problem 223 relative to the reachable and observable part 
of the triple ),,( CBA . The two remaining equations are linear. Thus 





















=
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0'0

0000
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0000
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P  

where 10,7,5,
__

=iP i  are the limiting values (as ∞→ft ) of the solutions of the above 

equations with boundary conditions 0),( =ffi ttP . These matrices are solutions of the 

algebraic equations which are obtained from the differential ones by setting the derivatives to 

zero and substituting for 5P  and 7P  their limiting values. The next section will show that 5

__

P  

is such that 5

__

2
1

25 'PBRBA −−  is stable (all its eigenvalues have negative real parts). This fact 

implies that two linear algebraic equations which determine 7

__

P  and 10

__

P  admit a unique 
solution. Indeed both of them are of the form 0=++ HGXXF  with F and G stable. Thus 
the solution of Problem 2.2.3 (when it exists relative to any initial state) can be found by first 

computing 5

__

P , solution of the ARE (in principal, by exploiting Theorem 2.2.4 , actually by 
making reference to the result in Chapter 4) and subsequently determining the (unique) 
solutions 7P  and 10P  of the remaining two linear equations.  
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Finally, if the given triple ),,( CBA  is not in canonical form (resulting from a change of 
variables defined by a nonsingular matrix T) the solution of the problem relies on 

TPTPor ':= . The check of this claim is straightforward.  

Remark 2.2.13 (Tracking problem over an infinite horizon) The optimal tracking problem in 
Remark 2.2.6 with reference to a finite control interval can be stated also for an infinite time 
horizon. This extension is particularly easy if the problem at hand is time-invariant (the 
matrices which define both the systems and the performance index are constant) and the 
signal to be tracked is the output of a linear time-invariant system. Under these circumstances 
the optimal control problem is specified by  

0)0(
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tCxty

tButAxtx
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+=&

 

and  

∫
∞

+−−=
0

)}()(')]()([ˆ)](')('{[ dttRututtyQttyJ µµ  

where µ  is an output of the dynamic system  

.)0(

),()(

),()(

0ϑϑ
ϑµ
ϑϑ

=
=
=

tHt

tFt&

 

As in Remark 2.2.6, 0'ˆˆ >= QQ . Further, due to self-explanatory motivations, the pair ),( GF  

is assumed to be observable so that if 0x  and 0ϑ  are generic though given, asymptotic 

stability of F must be required. Under these circumstances, it is not difficult to verify that the 
solution of the problem exists for each 0x  and 0ϑ if and only if the observable but unreachable 

part of the triple ),,( CBA  is asymptotically stable. The solution can be deduced by noticing 
that the problem at hand can be given the form of Problem 2.2.3 provided 6that the new 
system  

VuW += ξξ&  

and the performance index  

∫
∞

+Θ=
0

)''( dtRuuJ ξξ  

are considered, where  
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Thus the optimal control low is  

))(('),( 21
10 tPxPBRtxuc ϑ+−= −  

where iP  solves the ARE  
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CQCPBPBRPAPA ˆ'''0 1 +−+= −  

and is such that  

),(lim1 f
t

ttPP
f ∞→

= , ),( fttP  

being the solution of the DRE  

CQCPBPBRPAPAP ˆ''' 1 −+−−= −&  

satisfying the boundary condition 0),( =ffi ttP , while 2P  solves the linear equation  

HQCPPBBRAPF ˆ')''(0 1
1 −−+= − . 

Finally, the optimal value of the performance index is  

0300
'

2001000
0 ''2'),( ϑϑϑϑ PxPxPxxJ ++= , 

where 3P  is the solution of the Lyapunov equation  

HQHPBBRPPFPF ˆ''''0 2
1

2 +−+= − . 

Remark 2.2.14 (Penalties of the control derivatives) The discussion in Remark 2.2.8 is steel 
valid in the case ∞=ft  even if some care must be paid to existence of the solution. With the 

notation adopted, let nrΛ  and nrΛ̂  be the spectra of the unreachable parts of the pairs ),( BA  

and )ˆ,ˆ( BA , respectively. Then nrnr Λ=Λ ˆ . In fact, if rT  is a nonsingular matrix which 

performs the canonical decomposition of the pair ),( BA  into the reachable and unreachable 
parts, namely a matrix such that  
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then nrΛ  is the spectrum of rA3 . By letting  
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so that nrnr Λ⊆Λ ˆ , since the spectrum of rA3  is a subset of nrΛ̂ . It is not difficult to verify that  
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BA rr 0
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11 reachable 

from which nrnr Λ=Λ̂ . Indeed, if such a pair is not reachable, it follows that,  
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These equations imply that 0=u  and, the pair ),( 11 rr BA  should not be reachable.  

Let now noΛ  and noΛ̂  be the spectra of the unobservable parts of the pairs ),( CA  and )ˆ,ˆ( CA , 

respectively, where ]','[:ˆˆ'ˆ DDCCdiagQCC == , C and D being factorizations of Q and R, 

respectively. Then nono Λ⊆Λ ˆ . In fact, let oT  be a nonsingular matrix which performs the 

canonical decomposition of the pair ),( CA  into the observable and unobservable parts, 
namely a matrix such that  

[ ] ==
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Then, noΛ  is the spectrum of oA3 . If 
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so that nono Λ⊆Λ ˆ  since the spectrum of oA3  is a subset of noΛ̂ .  

Finally, denote by nroΛ  and nroΛ̂  the spectra of the unreachable but observable parts of the 

triples ),,( CBA  and )ˆ,ˆ,ˆ( CBA . From the preceding discussion it can be concluded that 

nronro Λ⊆Λ̂ .  

If a solution of Problem 2.2.3 defined by the quadruple ),,,( RQBA  exists for each initial state 

)0(x , i.e. all elements of nroΛ  lie in the open left half-plane, then a solution of Problem 2.2.3, 

defined by the quadruple )ˆ,ˆ,ˆ,ˆ( RQBA  (recall that R̂  is the weighting matrix for u&  in the 

performance index), exists for each initial state [ ]''' )0()0( ux , since, necessarily, all elements 

of nroΛ̂  lie in the open left half-plane.  

In the special case where )(Brank  is maximum and equal to the number of columns, the 
optimal regulator can be given a form different from the one which, referring to a finite 
control interval can anyhow be adopted also in the present context, the only significant 
difference being the time-invariance of the system. Since BB '  is nonsingular, from the system 
equation BuAxx +=&  it follows that  

)(')'( 1 AxxBBBu −= − & . 

On the other hand, the solution of Problem 2.2.3 implies that uKxKu ux +=&  so that  

xKxKu xx
ˆˆ += &&

&  

where ')'(:ˆ 1BBBKK ux
−=&  and ABBBKKK uxx ')'(:ˆ 1−−= .  
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By performing the integration of the equation for u&  between the initial time 0 and a generic 
instant t we obtain  

∫ ++−=
t

x udxKxtxKtu
0

)0()(ˆ))0()((ˆ)( ττ& . 

This is the control low which can be interpreted as a generalization of the PI controller to the 
multiplicative case.  

Remark 2.2.15 (Performance evaluation of the frequency-domain) 
The synthesis procedure based on the solution of Problem 2.2.3 can easily be exploited to 
account for requirements (more naturally) expressed in the frequency domain, as, for instance, 
those calling for a weak dependence of some variables of interest on others in a specified 
frequency range. In other words, the presence of harmonic components of some given 
frequencies in some state and/or control variables must be avoided, or, equivalently, suitable 
penalties on them must be set. This can be done in a fairly easy way. Indeed, recall that thanks 
to Parceval’s theorem  

∫ ∫
∞ ∞
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=
0

~ )()(
2

1
)()(' ωωω

π
djZjZdttztz  

where z is a time function, Z is its Fourier transform and it has obviously been assumed that 
the written expression make sense. Therefore, a penalty on some harmonic components in the 
signal )(tx  can be set by looking for the minimization of a performance index of the form  

∫
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ωωωωω
π

djXjFjFjX xx )()()()(
2

1 ~~  

where xF  is a suitable matrix of chapping function. xF  is rational and proper (not necessarily 

strictly proper) it can be interpreted as the transfer function of a system whit input x, 
)()()( ωωω jXjFjZ x=  is the Fourier transform of the output )(tz  and the integral of zz'  is 

the quantity to be evaluated. The usual performance index takes on the following (more 
general) form  
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where xF  and uF  are proper rational matrices. This index has to be minimized subject to 

equation (2.2.17). The resulting optimal control problem can be tackled by first introducing 
two (minimal) realizations of xF  and uF . Let the quadruples ),,,( xxxx DCBA  and 

),,,( uuuu DCBA  define such realizations, respectively, and note that  
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and  
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Thus the problem whit frequency domain requirements has been restated as an LQ problem 
over an infinite horizon where a rectangular term is present in the performance index. The 
results for the optimal regulator problem can be exploited provided only that the quadratic 
form in u is possible definite, namely if rank )( uD  equals the number of its columns. Indeed, 

the state weighting matrix is positive semidefinite since the form of fJ  implies that 

0': 1 ≥−= −
AAAAAc ZRZQQ  (see Remark 2.2.4). Assuming that 0>AR , the solution of the 

problem exists for each initial state )0(Ax  if and only if (see Theorem 2.2.5) the observable 

but unreachable part of the triple ),,( AAA CBA  is asymptotically stable, where  
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is a factorization of AQ . In conclusion, the problem whit frequency requirements can be 

viewed as a customary optimal regulator problem if xF  and uF  are such as to verify the above 

assumptions on sign and stability. Note that the resulting regulator is no longer purely 
algebraic. Indeed, the control variable u depends, through a constant matrix, upon the whole 
enlarged state vector Ax , so that uzuxzxx zKzKxKu ++= . Thus the regulator is a dynamic 

system whit state [ ]''' ux zz , input x (the state of the controlled system) and output u. 

Remark 2.2.16 (Stochastic control problem over an infinite horizon) 
The discussion in Remark 2.2.9 can be suitably modified to cover the case of an unbounded 
control interval. Corresponding to the (time-invariant) system  

0)0(

),()()()(

xx

tvtButAxtx

=
++=&

 

where v and 0x  are as in Remark 2.2.9, reference can be made to either the performance index  
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when 00 =x . In both cases the solution, if it exists, is constituted by the control law (2.2.19) 

defined in Theorem 2.2.3. In the simple cases where 0'000 >+Π xx  (performance index 1sJ ) 

and 0>V  (performance index 2sJ ), the solution exists is and only if the unreachable but 

observable part of the triple ),,( CBA  is asymptotically stable, where C is such that QCC =' . 
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The remaining part of this section is dedicated to some particular but very important 
properties of the optimal control feedback system and discussing the potentialities of design 
methods based on the minimization of quadratic indices.  
 
 
2.2.4.1 Stability properties 
 
The stability properties of system (2.2.17),(2.2.19), that is of system 

)()'()( 1 txPBBRAtx −−=& ,          (2.2.22) 

are now analyzed in detail. The fact that the control law guarantees a finite value of the 
performance index corresponding to any initial state suggests that system (2.2.22) should be 
asymptotically stable if every nonzero motion of the state is detected by the performance 
index.  

Lemma 2.2.2 Let the pare ),( BA  be reachable and CCQ '= . Then the matrix P  which 
satisfies the optimal control law for Problem 2.2.3 is positive definite if and only is the pair 

),( CA  is observable. 

Theorem 2.2.6 Let CCQ '=  and the triple ),,( CBA  be minimal. Then the closed loop 
system resulting from the solution of Problem 2.2.3 is asymptotically stable. 

Theorem 2.2.7 Assume that a solution of Problem 2.2.3 exists for each initial state. Then the 
optimal closed loop system is asymptotically stable if and only is the pair ),( QA  is detectable. 

Remark 2.2.17 (Existence and stabilizing properties of the optimal regulator) A summary of 
the discussion above concerning the existence and the stabilizing properties of the solution of 
Problem 2.2.3 is presented in Figure 2.2.26 where reference is made to a canonical 
decomposition of the triple ),,( CBA  and the notation of Remark 2.2.12 is adopted. Further, 
the term “stab.” denotes asymptotic stability and the existence or inexistence of the solution 
has to be meant for an arbitrary initial state.  

 

Figure 2.2.26: Optimal regulator problem: existence and stabilizing properties of the solution. 
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Remark 2.2.18 (Optimal regulation with constant exogenous inputs) The results concerning 
the optimal regulator can be exploited when the system has to be controlled so as to achieve 
asymptotic zero error regulation in the presence of unknown inputs of polynomial type. In the 
case of constant signals, the control system is described by 

,)0(

,)()(

,)()()(

0xx

NdtCxty

MdtButAxtx

=
+=

++=&

          (2.2.23) 

and a regulator has to be designed so as to guarantee for each constant signal sy  and d and 

each initial state 0x , 

s
t

ytt =
∞→

)(lim . 

Within this framework sy  is the set point for y, while d accounts for the disturbances acting 

on the system input and output. In the present setting the triple ),,( CBA  is minimal, the 
number of control variables equals the number of output variables and the state of the system 
is available to the controller. The controller can be considered as constructed by two 
subsystems: the first one is described by the equation 

     )()( tyyt s −=ξ&            (2.2.24) 

while the second one has to generate the control variable u on the basis of x and ξ  in such a 
way as to asymptotically stabilize the whole system. In designing this second system it is 
meaningful to ask for small deviations of the state and control variables from their steady state 
values together with a fast zeroing of the error. Since the first variations of the involved 
variables for constant inputs are described by system vΣ  obtained from equation 

(2.2.23),(2.2.24) by setting 0=d  and 0=sy , namely 
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a satisfactory answer is to let the second subsystem be constituted by the solution of Problem 
2.2.3 for vΣ  and a suitable performance index. Thus, chosen 
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with ξQ  and R positive definite and yQ  positive semidefinite, the optimal control law, if it 

exists, will surely be stabilizing, since vΣ  is observable from ξ  and given by 

δξδδξδδ 21),( KxKxu o
cv += . 

The existence of the solution is guaranteed by the reachability of vΣ , namely by the 

fulfillment of the condition 
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which in turn is equivalent to saying that system )0,,,( CBAΣ  does not possess transmission 
zeros at the origin (actually invariant zeros, because of the minimality of Σ ). In fact, 
reachability of the pair ),( BA  implies that in the above equation the rank of the second matrix 
on the right-hand side be equal to nm +  and, in view of the already mentioned minimality of 

)0,,,( CBAΣ , that there are transmission zeros at the origin if and only 0=+ BuAx  and 
0=Cx  with x and/or u different from 0. On the other hand, if )0,,,( CBAΣ , which possesses 

as many inputs as outputs, has a transmission zero located at the origin, then it would follow 
in turn entail the existence of a zero eigenvalue in the unreachable part of vΣ . Since this 

system is observable, we would conclude that no solution exists for Problem 2.2.3 when 
stated on such a system. Thus zero error regulation can be achieved in the presence of 
constant inputs only if none of the transmission zeros of )0,,,( CBAΣ  is located at the origin.  

Remark 2.2.19 (Penalties on the control derivatives) The problem considered in Remarks 
2.2.8 and 2.2.14 can be discussed further with reference to the stability properties of the 
solution.  
First recall that in view of Theorems 2.2.5 and 2.2.7, if a solution of Problem 2.2.3 stated for 
the quadruple ),,,( RQBA  exists for each initial state )0(x  and the resulting closed loop 

system is asymptotically stable, then the set nrono Λ∪Λ  must be stable, i.e. all its elements 

must have negative real parts. Assuming that this set is such, it is possible to claim that the 
Problem 2.2.3 stated for the quadruple ),,,( RQBA  admits a solution for each initial state 

[ ]')0(')0(' ux  if the set nroΛ̂  is stable. Since nronro Λ⊆Λ̂ , the set nroΛ̂  is stable if the set nroΛ  

is such. 
If stability of the resulting closed loop system has to be guaranteed as well, stability of the set 

noΛ̂  must be checked. To this end, observe that it noΛ∈ ˆλ , then it must be 

0,0ˆ,ˆ ≠
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Since matrix R is positive definite, D (which is a factorization of it) is square and nonsingular 

without lack of generality, so that these equations imply 0=u  since ],[ˆ DCdiagC =  and 

noΛ∈λ . Therefore, the set noΛ̂  is stable if the set noΛ  is stable.  

Notice, that the presence of a penalty term on the control derivative in the performance index 

allows one to relax the requirement on the sign of R: indeed it appears in matrix Q̂  only and 
can be positive semidefinite. In this case, matrix D, if chosen of maximal rank, is no longer 
square and the above discussion about stability of the closed loop system has to be modified. 

In fact, assume as before that the set nroΛ̂  is stable in order to guarantee the existence of the 

solution for each initial state and, as for noΛ̂ , note that the above equations (which amount to 

say noΛ∈ ˆλ ) still imply 0=u  if 0≠λ : thus such an eigenvalue is currently stable if noΛ  is 

stable. If, on the other hand, 0=λ , those equations become 0,0 ==+ CxBuAx . Hence a 
transmission zero of system )0,,,( CBAΣ  is located at the origin since x and u cannot 
simultaneously be zero. Therefore, if R is not positive definite, the conclusion can be drawn 

that Problem 2.2.3, stated for the quadruple )ˆ,ˆ,ˆ,ˆ( RQBA , can not admit a stabilizing solution 
whenever system )0,,,( CBAΣ  possesses transmission zeros located at the origin. 
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Problem 2.2.4 (Optimal regulator problem with exponential stability) For the time-invariant 
system 

0)0(

),()()(

xx

tButAxtx

=
+=&

           (2.2.25) 

where 0x  is given, find a control which minimizes the performance index 

∫
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+=
0

2 )]()(')()('[ dttRututQxtxeJ tα .         (2.2.26) 

No constraints are imposed on the final state and further 0'≥= QQ , 0'>= RR , while α  is a 
given nonnegative real number. 

For this problem the following result holds. 

Theorem 2.2.8 Let the triple ),,( QBA  be minimal. Then the solution of Problem 2.2.4 exists 

for each initial state 0x  and each 0≥α . The solution is characterized by the control law 

xPBRxu o
cs αα ')( 1−−=            (2.2.27) 

where αP  is the symmetric and positive definite solution of the algebraic Riccati equation 

       QPBPBRPIAIAP +−+++= − ')'()(0 1αα          (2.2.28) 

such that ),(lim f
t

ttPP
f ∞→

=α , where ),( fttPα  is the solution of the differential Riccati equation  

QPBPBRPIAIAPP −++−+−= − ')'()( 1αα&  

with boundary condition 

0),( =ff ttPα . 

Further, all eigenvalues of the closed loop system (2.2.25),(2.2.28) have real parts smaller 
than α− . 
 
 
2.2.4.2 Robustness properties 
 
The control law which is a solution of the optimal regulator problem has been shown to be 
stabilizing under suitable mind assumptions. However, this is not the only nice property that it 
possesses. First the following lemma is needed. Consider the system 

),()()( tButAxtx +==&            (2.2.30) 

)()( tCxty = ,            (2.2.31) 

)(:)(')( 1 tKxtPxBRtu =−= −           (2.2.32) 

where P is any symmetric solution of the ARE 

        QPBPBRPAPA ++= − '_'0 1           (2.2.33) 

with CCQ '−  and 0'>= RR . 
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Lemma 2.2.3 Let K be given by equations (2.2.32),(2.2.33). Then 

       )()()()( ~~ sQHsHIsGsG +=           (2.2.34) 

where  

)()( 2
1

sKHRIsG −=  

2
1

1)_()(
−−= BRAsIsH . 

From equation (2.2.34), letting Rjs ∈= ωω, , it follows that IjGjG ≥− )()(' ωω  since its 
left-hand side is an hermitian matrix (actually it is the product of a complex matrix by its 
conjugate transpose), while its right-hand side is the sum of the identity matrix with an 
hermitian positive semidefinite matrix. In the particular case of a scalar control variable, 
equation (2.2.34) implies that 

   RBAIjK ∈∀≥−− − ωω ,1)(1 1 .          (2.2.35) 

Based on this relation the following theorem states that the optimal closed loop system is 
robust of both phase and gain margin. 

Theorem 2.2.9 Consider the system (2.2.30),(2.2.31) and assume that: 

i) The input u is scalar; 
ii)  The triple ),,( CBA  is minimal; 

iii)  In equation (2.2.32) PP = , the solution of equation (2.2.33) relevant to Problem 
2.2.3 defined by the quadruple ),',,( RCCBA . 

Then the phase margin of the closed loop system is not less than 3π  while the gain margin 
is infinite. 

Theorem 2.2.10 Consider Problem 2.2.3 and assume that the pair ),( BA  is reachable, 0>Q  
and 0>R  diagonal. Then each one of the m loops of the system resulting from the 
implementation of the optimal control law possesses a phase margin not smaller than 3π  
and an infinite gain margin.  
 
 
2.2.4.3 Cheap control 
 
The behaviour of the solution of the optimal regulator problem is now analyzed when the 
penalty set on the control variable becomes less important, that is when it is less mandatory 
to keep the input values at low levels. When the limit situation is reached where no cost is 
associated to the use of the control variable (the control has become a cheap item) the input 
can take on arbitrary high values and the ultimate capability of the system to follow the 
desired behaviour (as expressed by the performance index) is put into evidence. 
Consider the system 

),()()( tButAxtx +==&          (2.2.36a) 

)()( tCxty = ,          (2.2.36b) 

0)0( xx =            (2.2.36c) 

which is assumed to be reachable and observable, consider the performance index 
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  ∫
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0

)]()(')()('[
2

1
dttRututytyJ ρ           (2.2.37) 

where 0'>= RR  is given and 0>ρ  is a scalar. The desired behaviour for the system is 
0)( =⋅y . 

Under the assumptions above, the solution of the Problem 2.2.3 defined by equations (2.2.36)-
(2.2.37) exists for each initial state and 0>ρ  and is specified by the control law 

    xPBRxu o
cs )('

1
),( 1 ρ

ρ
ρ −−=           (2.2.38) 

where )(ρP  is the (unique) positive definite solution of the ARE 

CCPBPBRPAPA ''
1

'0 1 +−+= −

ρ
. 

A preliminary result concerning the asymptotic properties of )(ρP , is given in the following 

lemma where CCQ ':= , ),( ρtxo  is the solution of equations (2.2.36a), (2.2.36c),(2.2.38) and 

),( ρtu o  is the relevant control. 

Lemma 2.2.4 The limit of )(ρP  as +→ 0ρ  exists and is denoted by 0P . 

A meaningful measure of how similar the system response is to the desired one (that is how 
)(⋅y  is closed to zero) is supplied by the quantity 

      ∫
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=
0

0 ),(),('
2

1
:),( dttQxtxxJ oo

x ρρρ  

the limiting value of which is given in the following theorem. 

Theorem 2.2.11 Let 0P  be the limit value of )(ρP . Then 

0000
0

'
2

1
),(lim xPxxJ x =

+→
ρ

ρ
. 

Thanks to this theorem matrix 0P  supplies the required information about the maximum 

achievable accuracy in attaining the desired behaviour ( 0)( =⋅y ). The best result is 00=P . 

The circumstances under which this happens are specified in the forthcoming theorem. For 
the sake of simplicity, matrices B and C (which appear in equations (2.2.36a), (2.2.36b) and 
have dimensions mn×  and np× ) are assumed to have rank equal to m and p, respectively. 

Theorem 2.2.12 Let system (2.2.36a), (2.2.36b) be both reachable and observable. The 
following conclusions hold: 

i) If pm < , then 00 ≠P ; 

ii)  If pm = , then 00=P  if and only if the transmission zeros of the system have 

nonpositive real parts; 

iii)  If pm >  and there exists a full rank pm×  matrix M such that the transmission 

zeros of system )0,,,( CBMAΣ  have nonpositive real parts, then 00=P . 
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2.2.4.4 Inverse problem 
 
The inverse optimal control problem consists in finding, for a given system and control law, a 
performance index with respect to which such a control law is optimal. The discussion as well 
as the solution of this seemingly useless problem allows us to clarify the ultimate properties of 
a control law in order that it can be considered optimal and to precisely evaluate the number 
of degrees of freedom, which are actually available when designing a control law via an LQ 
approach. 
We will deal only with the case of scalar control variable and time invariant system and 
control law. Thus, the inverse problem is stated on the linear dynamical system 

)()()( tButAxtx +=&            (2.2.39) 

and the control law 

     Kxxu =)(             (2.2.40) 

where the control variable u is scalar, while the state vector x has n components. The problem 
consists in finding a matrix 0'≥= QQ  such that the control law (2.2.40) is optimal relative to 
the system (2.2.39) and the performance index 

      ∫
∞

+=
0

2 )]()()('[ dttutQxtxJ .          (2.2.41) 

Since u is scalar, there is no lack of generality in taking 1=R . 
For the above problem a few results are available, among which the most significant one is 
stated in the following theorem where K is assumed to be nonzero. If this is not the case, the 
solution of the problem would be trivial, namely, seemingly 0=Q . 

Theorem 2.2.13 With the reference to the system (2.2.39) and the control law (2.2.40) where 
0≠K , let the following assumptions be assumed: 

(a1) The pair ),( BA  is reachable; 
(a2) The system (2.2.39),(2.2.40) is asymptotically stable; 

(a3) 1)(1:)( 1 ≥−−= − BAIjKj ωωµ , ω∀  real, 1)( ≠⋅µ ; 

(a4) The pair ),( KA  is observable. 

Then there exists 0'≥= QQ  such that the control law (2.2.40) is optimal for the LQ problem 
defined on the system (2.2.39) and the performance index (2.2.41). 

Remark 2.2.20 (Unnecessity of assumption (a4)) The forth assumption in Theorem can be 
removed. Indeed, let the pair ),( KA  be not observable and its unobservable part be already 
put into evidence, so that 
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with the pair ),( 11 KA  observable and the pair ),( 11 BA  reachable (this last claim follows from 
the reachability assumption of the pair ),(BA ). Theorem 2.2.13 can be applied to the 

subsystem 1Σ  described by uBxAx oo 11 +=&  and the control law oxKu 1= . In fact, assumption 

(a2) is verified for the triple ),,( 111 KBA  if it holds for the triple ),,( KBA , since 
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Furthermore, since  

1
1

11
1 )()( BAsIKBAsIK −− −=− , 

if condition (a3) holds for the triple ),,( KBA  it holds also for the triple ),,( 111 KBA . Thus a 

matrix 1Q  can be found which defines a performance index relative to which xK1  is an 

optimal control law for the subsystem 1Σ . It is then obvious that matrix [ ]01QdiagQ =  
specifies a performance index corresponding to which the given control law is optimal (the 
state of the subsystem uBxAxAx noono 232 ++=&  affects neither in a direct nor in an indirect 

way the performance index. Thus, it should not contribute to the current value of the control 
variable). 

Remark 2.2.21 (Degrees of freedom in the choice of the performance index)  
Only the structure of the performance index should be considered as given. The relevant free 
parameters are being selected (through a sequence of rationally performed trails) so as to 
specify a satisfactory control law. If the control law is scalar, the number of theses design 

parameters is substantially less than 
2

)1(
1

++ nn
, that is the number of elements in R and Q. 

On one hand, R can be set to 1 without loss of generality, while, on the other hand, under the 
mild assumptions of reachability of ),(BA  and stability of the feedback system, conditions 
(a1)-(a3) of Theorem 2.2.13 are satisfied whenever the control law results from the solution of 
the LQ problem corresponding to an arbitrary 0≥Q . These conditions are sufficient to ensure 
the existence of the solution of the inverse problem. Thus, the same control law must also 
result from a Q expressed as the product of an n-vector by its transpose and the really free 
parameters are n. 

Conditions (a1)-(a3) can further be weakened, up to becoming necessary and sufficient. These 
new conditions are presented in the following theorem where the triple ),,( KBA  has already 
undergone the canonical decomposition, thus exhibiting the form 
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Theorem 2.2.14 With reference to the system (2.2.39) and the control law (2.2.40) there 
exists a matrix 0'≥= QQ  such that the optimal regulator problem defined on that system and 
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the performance index (2.2.41) admits a solution for each initial state. The solutions specified 
by the given control law if and only if  

(a1) All the eigenvalues of 9A  have negative real part, 

(a2) All the eigenvalues of 125 KBA +  have negative real part, 

(a3) One of the two following conditions holds: 
 (a31) 0=K  

 (a32) 1)(,,1)(1:)( 2
1

51 ≠⋅∀≥−−= − µωωωµ realBAIjKj . 

 
 

2.3 The LQG problem 
 
 
2.3.1 Introduction 
 
The discussion in this chapter is dedicated to a not purely deterministic framework and 
focused on two problems, which concern with one and the same stochastic system. The 
connection between these problems and the previously presented material is not apparent 
from the very beginning while it will be shown to be very tight. Reference is made to a 
stochastic system described by 

)()()()()()( tvtutBtxtAtx ++=&           (2.3.1a) 

)()()()( twtxtCty +=             (2.3.1b) 

00)( xtx =               (2.3.1c) 

where, as customary, A, B, C are continuously differentiable functions. In equations (2.3.1a), 
(2.3.1b) [ ]''' wv  is a zero mean, gaussian stationary, )( pn + -dimensional stochastic 
process (n and p are the dimensions of the state and output vectors) which is assumed to be a 
while noise. In equation (2.3.1c) the initial state is an n-dimensional gaussian random 
variable independent from [ ]''' wv . The uncertainty on system (2.3.1) is thus specified by  

t
tw

tv
E ∀=








,0]

)(

)(
[ ,            (2.3.2) 

      00 ][ xxE = ,               (2.3.3) 

and 
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=








,         (2.3.4) 

[ ] ttwtvxE ∀= ,0])(')('[ 0 ,             (2.3.5) 

00000 ])')([( Π=−− xxxxE ,             (2.3.6) 

where the quantities 0x , V , Z , W , 0Π  are given and δ  is the impulsive function. Moreover, 

matrices V , W , Ξ , 0Π  are symmetric and positive semidefinite. 

The two problems under consideration are concerned with the optimal estimate of the state of 
system (2.3.1) and its optimal (stochastic) control. The first problem is to determine the 
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optimal approximation )(ˆ ftx  of )(ˆ ftx , relying on all available information, namely the time 

history of the control and output variables (u and y) on the interval ],[ 0 ftt  and the uncertainty 

characterization provided by equations (2.3.2)-(2.3.6). The second problem is to design a 
regulator with input y, which generates the control u so as to minimize a suitable performance 
criterion.  

Remark 2.3.1 (Different system models)  
When the system under consideration is described by the equation  

)(**)()()()()( tvBtutBtxtAtx ++=&            (2.3.7) 

where *v  is a zero mean white noise independent from 0x  and characterized by  

[ ] )(:])(')(*'
)(

)(*
[ τδ −Ξ=








ttwtv

tw

tv
E  

with 

0*,0
*'

**
' >≥








=Ξ=Ξ V

WZ

ZV
. 

In this case the previously presented formulation is still adopted by defining the stochastic 
process **: vBv =  which verifies equations (2.3.1a), (2.3.2), (2.3.4), (2.3.5) with 

*'**: BVBV = , **: ZBZ = . 
At other times, equations (2.3.1a), (2.3.1b) are replaced by equations (2.3.7) and  

)(**)()()( tvCtxtCty +=              (2.3.8) 

where *v  is a zero mean white noise independent of 0x  with intensity 0* >V . Letting 

**: vBv =  and **: vCw = , it is straightforward to get back to equations (2.3.1)-(2.3.6) with 
*'**: BVBV = , **: ZBZ = , *'**: CVCW = . 

 
 
2.3.2 Kalman filter 
 
The problem of the optimal estimate or filtering of the state of system (2.3.1)-(2.3.6) is 
considered in this section. The adopted performance criterion for the performed estimate is 
the expected value of the square of the error undergone in evaluating an arbitrarily given 
linear combination of the state components. Thus the problem to be discussed can be formally 
described as follows. 

Problem 2.3.1 (Optimal estimate of )(' ftxb ) Given an arbitrary vector nRb∈ , determine, on 

the basis of the knowledge of )(ty  and )(tu , fttt ≤≤0 , a scalar β  such that the quantity 

   ]))('[(: 2β−= fb txbEJ              (2.3.9) 

is minimized with reference to the system (2.3.1)-(2.3.6). 

We will consider two cases. The first one is the nominal case where the matrix W (the 
intensity of the output noise w) is positive definite. The second one is the singular case where 
W is positive semidefinite. These two cases differ significantly from each other not only from 
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technical point of view, but also of the meaning of the underlying problem. In order to 
understand this let recall that the matrix W is symmetric and it can be presented as  

      DTTW ':=  

where T is an orthogonal matrix, matrix D is diagonal ]0,,0,,,,[: 21 KK rddddiagD =  and 
rWrank =)( . By letting  

       Tyy =:* , 

it follows that  

**:* wxCTwTCxy +=+=  

with  

0)](*[ =twE  and DTwtwTEwtwE == ')](')([)](*')(*[ ττ , 

so that it is possible to conclude that the last rp −  components of *y  are not corrupted by 
noise. In other words, the assumption 0>W  gives that no outputs or their linear combinations 
are noise free. 
 
 
2.3.2.1 Nominal case 
 
The optimal state estimation problem is now considered under the assumption that the matrix 
W is positive definite. First, the observation interval is supposed to be finite. Subsequently, 
the case of infinite interval will be tackled.  
Let ∞<<<∞− ftt0 . The Problem 2.3.1 is discussed under the additional constraint to the 

scalar β , which is asked to linearly depend on y, according to the equation 

∫=
ft

t

dttyt
0

)()('ϑβ             (2.3.10) 

where the function )(tϑ  must be selected so as to minimize the value of the criterion (2.3.9). 
However, it is possible to prove that the choice (2.3.100 for the form of the estimate of 

)(' ftxb  does not actually cause any loss in optimality, since in the adopted stochastic 

framework the estimate which minimizes bJ  is indeed of that form. With the reference to the 

selection of ϑ  the following result holds. 

Theorem 2.3.1 Consider equation (2.3.10). The function 0ϑ  which solves Problem 2.3.1 
relative to system (2.3.1)-(2.3.6) when the observation interval is finite, 0)( =⋅u , 00 =x  and 

0=Z , is given by  

)()()()( 010 tttCWt αϑ Π= −            (2.3.11) 

where Π  is the (unique, symmetric, positive semidefinite) solution of the differential Riccati 
equation 

    )()()()(')()()()(')()( 1 tVttCWtCtttAtAtt +ΠΠ−Π+Π=Π −&         (2.3.12) 

satisfying the boundary condition 

00)( Π=Π t             (2.3.13) 
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while 0α  is the unique solution of the linear equation 

    )()]'()(')()([)( 1 ttCWtCttAt αα −Π−−=&           (2.3.14) 

satisfying the boundary condition 

bt f =)(α              (2.3.15) 

Some explanations: if consider, over the interval ],[ 0 ftt , the dynamical system 

       ϑαα '' CA +−=&           (2.3.16a) 

bt f =)(α            (2.3.16b) 

in view of equations (2.3.1a),(2.3.1b) it follows that 

vwy
dt

xd
'''

)'( αϑϑα +−=  

By integrating both sides of this equation between 0t  and ft  we get in view of equations 

(2.3.10),(2.3.15), 

∫∫ +−=−
ff t

t

t

t

f dttvtdttwttxttb
00

)()(')()(')()(')(' 00 αϑαβ  

By squaring both sides of this equation, performing the expected value operation, exploiting 
the linearity of the operator E and the identity rssrsr '')'( 2 =  and taking into account equation 
(2.3.2)-(2.3.6) it follows that  

∫ ++Π=
ft

t

b dttWttVtttJ
0

)]()(')()('[)()(' 000 ϑϑαααα         (2.3.17) 

and selecting 0ϑ  so as to minimize bJ  amounts to solving the optimal control problem 

defined by the linear system (2.3.16) and the quadratic performance index (2,3,17), i.e. an LQ 
problem where the roles of the final and initial times have been interchanged. 

Remark 2.3.2 (Meaning of 0β ) 
Within the particular framework into which Theorem2.3.1 is embedded, both )(tx  and )(ty  

are zero mean random variables because 00 =x  and v and w are zero mean white noises. 

Therefore 0β  is a zero mean random variable as well and its value, as given in Theorem 

2.3.1, is the one which minimizes the variance of the estimation error of )(' ftxb . 

Remark 2.3.3 (Variance of the estimation error)  
Theorem 2.3.1 allows us to easily conclude that the optimal value of the performance criterion 
is  

btbJ f
o
b )('Π=  

which is the minimal variance of the estimation error at time ft . Thus, the variance depends 

on the value of the matrix Π  at that time. Note that the final time ft  and the initial time 0t  
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are finite and given but generic. Therefore btb )('Π  is the minimal variance of the estimation 
error of )(' txb . 

Remark 2.3.4 (Correlated noises)  
When v and w are correlated noises 0≠Z . In fact, it is easy to check that equation (2.3.17) 
becomes 

∫ +−+Π=
ft

t

b dttWttZttVtttJ
0

)]()(')()('2)()('[)()(' 000 ϑϑϑααααα  

so that the estimation problem reduces to an LQ problem with a rectangular term which can 
be managed as shown in Remark 2.2.4. However, observe that matrix ': 1ZZWVVc

−−=  is 

positive semidefinite, since 'TTVc Ξ=  where [ ]1: −−= ZWIT  and, from equation (2.3.4), 

0≥Ξ . Thus, Theorem 2.3.1 holds with V, )(tA  replaced by cV , )()(:)( 1 tCZWtAtAc
−−= , 

respectively, and equation (2.3.11) replaced by  

)()')()(()( 1 tZttCWt oo αϑ +Π= − . 

In view of this discussion there is no true loss of generality in considering only the case 
0=Z . 

The importance of Theorem 2.3.1 is grater than might appear from its statement. Indeed, it 
allows us to devise the structure of a dynamic system the state of which, )(ˆ tx  is, for each 

],[ 0 fttt ∈ , the optimal estimate of the state of (2.3.1)-(2.3.6). This fact is presented in the 

next Theorem.  

Theorem 2.3.2 Consider the system (2.3.1)—(2.3.6) whit 0)( =⋅u , 00 =x  and 0=Z . Then, 

for each nRb ∈  and for ∞<≤≤<∞− fttt0  the optimal estimate of )('txb  is )(ˆ' txb , )(ˆ tx  

being the state, at time t, of the system  

),()()(ˆ)]()()([)(ˆ tytLtxtCtLtAtx −+=&         (2.3.18a) 

0)(ˆ 0 =tx            (2.3.18b) 

where 1)(')(:)( −Π−= WtCttL  and Π  is the solution (unique, symmetric and positive 
semidefinite) of the differential Riccati equation (2.3.12).  

The above results can easily be generalized to cope with the case where 0)( ≠⋅u  and 00 ≠x  

since the linearity of the system allows us to independently evaluate the effects of x of the 
deterministic input u and the time propagation of the expected value of the initial state. The 
presence of the deterministic input is taken into account by simply adding the term Bu to the 

equation of x&̂ , while the propagation of the state expected value is correctly performed by 
giving the value 0x  to )(ˆ 0tx .  

Recalling that 0)]()(ˆ[ 00 =− txtxE , we can conclude that, ttxtxE ∀=− ,0)]()(ˆ[ , and )(ˆ' txb  

is still the estimate of )(' txb which entails an error with minimal variance. In short, )(ˆ' txb  is 
said to be the optimal or minimal variance estimate of )(' txb , thus justifying the commonly 
adopted terminology according to which Problem 2.3.1 is the minimal variance estimation 
problem. These remarks are collected in the following theorem. 
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Theorem 2.3.3 Consider the system (2.3.1)—(2.3.6) whit 0=Z . Then, for each nRb ∈  and 
for ∞<≤≤<∞− fttt0  the optimal variance estimate of )(' txb  is )(ˆ' txb , )(ˆ tx  being the 

state, at time t, of the system  

),()()()()(ˆ)]()()([)(ˆ tutBtytLtxtCtLtAtx +−+=&       (2.3.19a) 

00 )(ˆ xtx =           (2.3.19b) 

where 1)(')(:)( −Π−= WtCttL  and Π  is the solution (unique, symmetric and positive 
semidefinite) of the differential Riccati equation (2.3.12) satisfying the boundary condition 
(2.3.13).  

Remark 2.3.5 ( Not strictly proper system) 
In view of the discussion preceding Theorem 2.3.3, it is quite obvious how the case where a 
term )()( tutD  appears in eq. (2.3.1b) can be handed. Indeed, it is sufficient to add to ŷ , 
which is the optimal estimate of y, the term Du , so that equation (2.3.19a) becomes  

      uLDBLyxLCAx )(ˆ)(ˆ ++−+=& . 

Remark 2.3.6 (Meaning of )(tΠ ) 
By referring to the proof of Theorem 2.3.1, it is easy to conclude that  

btxtxtxtxEbtxbtxbEbtb ]))'(ˆ)())((ˆ)([(']))(ˆ')('[()(' 2 −−=−=Π . 

Since b is arbitrary, the matrix )(tΠ  is the variance of the optimal estimation error at time t: 
therefore, any norm of it, for instance its trace, constitutes, when evaluated at some time τ , a 
meaningful measure of how good is the estimate performed on the bases of the data available 
up to τ .  

Remark 2.3.7 (Incorrelation between the estimation error and the filter state) 
An interesting property of the Kalman filter is put into evidence by the following discussion. 
Let xxe ˆ: −=  and consider the system with state [ ]'ˆ' xe , which is deduced by the equations  
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By denoting with )(te  and )(ˆ tx  the expected values of )(te  and )(ˆ tx , respectively, and 
letting  

[ ] 
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ΠΠ

=−−








−
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E , 

it follows that the matrices 2,1;2,1, ==Π jiij , satisfy the differential equations 

')()'( 111111 LWLVLCALCA ++Π+++Π=Π&          (2.3.20) 

'''')( 11121212 LWLLCALCA −Π−Π+Π+=Π&          (2.3.21) 

''''' 2222121222 LWLAALCLC +Π+Π+Π−Π−=Π&  

with the boundary conditions  
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,)( 0011 Π=Π t             (2.3.22) 

    ,0)( 012 =Π t             (2.3.23) 

    0)( 022 =Π t . 

By recalling that 1' −Π−= WCL , it is straightforward to check that equation (2.3.20) coincides 
with equation(2.3.12) and that equation (2.3.22) is indeed equation (2.3.13), so that 

)()(11 ⋅Π=⋅Π . From this identity, it follows that in equation (2.3.21) it is 

0'''11 =−Π− LWLLC : thus, 0)(12 =⋅Π  solves such an equation with the relevant boundary 
condition (2.3.23). This fact proves that the stochastic processes e and x&  are uncorrelated. By 
exploiting Remark 2.3.4, the same arguments can be extended to the case where v and w are 
correlated )0( ≠Z .  
The proof of Theorem 2.3.1 suggests which results pertaining to LQ problems are useful in 
the case of an unbounded observation interval, that is when −∞=0t . By referring to Section 

2.2.3 of Chapter 2.2, the initial state of the system is supposed to be known and equal to zero, 
so that 00 =x , 00 =Π  and a suitable reconstructability assumption is introduced (recall that 

this property is dual to controllability). On this basis, the forthcoming theorem can be stated.  

Theorem 2.3.4 Let the pair ))(),(( tCtA  be reconstructable for ftt ≤ . Then the problem of the 

optimal state estimation for the system (2.3.1)—(2.3.6) with 0=Z , 00 =x , 00 =Π  admits a 

solution also when −∞=0t . For each nRb ∈  and ft≤τ the optimal estimate of )('τxb  is 

given by )(ˆ' τ∞xb , where )(ˆ τ∞x  is the limit approached by the solution, evaluated at τ , of the 
equation  

),()()()(ˆ)]()()([)(ˆ tButytLtxtCtLtAtx +−+=&          (2.3.24) 

0)( 0 =tx  

when −∞=0t . In equation (2.3.24) 1)(')(:)( −Π−= WtCttL  and, for all t, Π  is a symmetric 

and positive semidefinite matrix given by  

),(lim)( 0
0

ttt
t

Π=Π
−∞→

, 

),( 0ttΠ  being the solution (unique, symmetric and positive semidefinite) of the differential 

Riccati equation (2.3.12) satisfying the boundary condition 0),( 00 =Π tt .  

Thus, the apparatus, which supplies the optimal estimate possesses the structure shown in in 
Fig. 2.3.2 (with 00 =x  and, if it is the case, the term Du  added to ŷ ) also when the 

observation interval is unbounded.  
In a similar way, it is straightforward to handle filtering problems over an unbounded 
observation interval when the system is time-invariant: indeed, it is sufficient to mimic the 
results relevant to the optimal regulator problem  in order to state the following theorem 
which refers to the time-invariant system  

),()()()( tvtButAxtx ++=&          (2.3.25a) 

).()()( twtCxty +=           (2.3.25b) 
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Theorem 2.3.5 Consider the system (2.3.25), (2.3.1c)—(2.3.6) with 0=Z , 00 =x , 00 =Π  

and the pair ),( CA  observable. Then the problem of the optimal state estimation admits a 

solution also when −∞→0t . For each nRb ∈  and ft≤τ the optimal estimate of )('τxb  is 

given by )(ˆ' τ∞xb , where )(ˆ τ∞x  is the limit approached by the solution, evaluated at τ , of the 
equation  

),()()(ˆ][)(ˆ tButyLtxCLAtx +−+=&          (2.3.26) 

0)( 0 =tx  

when −∞=0t . In equ. (2.3.26) 1': −Π−= WCL , Π  being a constant matrix, symmetric and 

positive semidefinite, which solves the algebraic Riccati equation  

   VCWCAA +ΠΠ−Π+Π= −1''0           (2.3.27) 

and is such that 

),(lim)( 0
0

ttt
t

Π=Π
−∞→

, 

),( 0ttΠ  being the solution (unique, symmetric and positive semidefinite) of the differential 

Riccati equation (2.3.12) satisfying the boundary condition 0),( 00 =Π tt . 

Obviously, then Theorem 2.3.5 applies the Kalman filter is a time-invariant system, the 
stability properties of which can be analyzed as done within the framework of the optimal 
regulator problem (Section 2.2.4.1 of Chapter 2.2.4). All the results there are still valid, 
provided the necessary modifications have been brought. As an example, the particularly 
meaningful result concerning asymptotic stability can be stated as shown in the following 
theorem. 

Theorem 2.3.6 Consider the system (2.2.25) and let the triple ),,( CFA  be minimal, 'F  being 
any factorization of V. Then the Kalman filter relevant to an unbounded observation interval 
is asymptotically stable, i.e. all the eigenvalues of the matrix CLA +  have negative real parts.  

 
2.3.2.2 Singular case 
 
A possible way to dealing with the filtering problem in the singular case is now presented 
with reference to the time-invariant system described by (2.3.25). Thus the intensity of the 
output noise is a matrix W which is not positive definite, i.e. 0≥W , 0det =W  and , for the 
sake of simplicity, the rank of matrix C (2.3.25b) is assumed to be equal to the number p of its 
rows.  
Denote with [ ]'': 21 TTT =  an orthogonal matrix such that  








Ω
=

00

0
'TWT  

where Ω  is a nonsingular matrix of dimensions pp <1 . Letting )(:)(* tTyty = , it follows that  
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In view of the fact that the intensity of the white noise wT2  is zero, this relation can be 
rewritten as  

)()()( twtxCty dd
∗+= ,         (2.3.28a) 

)()( txCty cc =           (2.3.28b) 

where CTCd 1:= , CTCc 2:=  and )(:)( 1 twTtw =∗ . The vector du  (with 1p components) is thus 

constructed by those output variables, which are actually affected by the noise w while the 
vector cy (with 1pp − components) accounts for those output variables, which are not affected 

by it. Therefore, the noise-free information carried by cy  should be exploited in tackling the 

state estimation problem. In this regard, let ∗C be an nppn ×−− )( 1  matrix such that 

[ ]'' ∗CCc  is nonsingular and denote with [ ]∗ΓΓc  the inverse of this last matrix. It follows 

that  

)()()( )1( txtytx cc
∗Γ+Γ=           (2.3.29) 

where  
)(:)()1( txCtx ∗= .           (2.3.30) 

In principal, the time derivative of the noise-free function cy  can be computed so that from 

eqs. (2.3.25a), (2.3.16a), (2,3,28)—(2.3.30) it follows that  

)()()()(

)]()()([)(
)1( tvCtBuCtxACtyAC

tvtButAxCty

cccccc

cc

++Γ+Γ=

=++=
∗

&
      (2.3.31a) 

)()()()(

)]()()([)(
)1(*

)1(

tvCtBuCtxACtyAC

tvtButAxCtx

cc
∗∗∗∗

∗

++Γ+Γ=
=++=&

      (2.3.31b) 

)()()()( )1( twtxCtyCty dccdd
∗∗ +Γ+Γ=          (2.3.31c) 

Equations (2.3.31) define a dynamic system with state )1(x , known inputs u and cy , unknown 

inputs (noises) v and ∗w , outputs dy and cy& . More concisely, equations (2.3.31) become  

),()()()( )1()1()1()1()1()1( tvtuBtxAtx ++=&         (2.3.32a) 

),()()()( )1()1()1()1()1()1( twtuDtxCty ++=         (2.3.32b) 

where )(:)()1( tvCtv ∗= , 
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and ∗∗ Γ= ACA :)1( , [ ]BCACB c
∗∗ Γ=:)1( , 
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The intensity of the white noise [ ]'' )1()1( wv  is  
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If the intensity of )1(w , i.e. the matrix  








 Ω
=

'

''
:

1

1)1(

ccc

c

VCCZTC

CZT
W  

is positive definite, the filtering problem relative to the system (2.3.32) is normal and the 
results of the preceding section can be applied, provided that the probabilistic characterization 
of )( 0

)1( tx  could be performed on the basis of all available information. If, on the other hand, 
)1(W  is not positive definite, the above outlined procedure can again be applied. Note that the 

dimension of the vector )1(x  is strictly less than n. Thus, the procedure can be iterated only a 
finite number of times, and either the situation is reached where 0)1( >W  or n noise-free 
outputs are available and suited to exactly estimated x. 
Assuming, for the sake of simplicity, that )1(W  is positive definite, the expected value and 
variance of the initial state of system (2.3.32a) has to be computed, given )()( 00 txCty cc = . If 

)( 0tx  is not a degenerate gaussian random variable, i.e. if 00 >Π , it can be shown that the 

following relation hold  

]])([)'('[)]()([: 00
1

00000
)1()1(

0 xCtyCCCxCtytxEx cccccc −ΠΠ+== −∗ , 

'])'('[])()')()()([(: 0
1

0000
)1(

00
)1()1(

00
)1()1(

0
∗−∗ ΠΠΠ+Π=−−=Π CCCCCCtyxtxxtxE ccccc . 

Let )1(Π  be the solution  (unique, symmetric and positive semidefinite) of the DRE  

)()(')(')()(:)( )1()1(1)1()1()1()1()1()1()1()1()1( tCWCtVAttAt ccc ΠΠ−+Π+Π=Π −&  

satisfying the boundary condition )1(
00

)1( )( Π=Π t . In this equation  

)1(1)1()1()1()1( )(: CWZAAc
−−= , [ ]'': 1

)1( CVCCZTCZ −= ∗∗ , 

')(: )1(1)1()1()1()1( ZWZVVc
−−=  and ':)1( ∗∗= VCCV . 

Then the Kalman filter for the system (2.3.32) when the uncertainty is specified as above and 
the observation interval is finite, possesses the gains cL  and dL  given by the equation  

[ ] 1)1()1()1()1( )](')([)()( −+Π−= WZCttLtL cd .         (2.3.33) 

Notice that these gains are time-varying.  
The actual implementation of the last result does not need differentiation. In fact, the signal 

cy , after differentiation and multiplication by cL− , undergoes integration. Since )1(Π  is a 

differentiable function, from equation (2.3.33) it follows that also the function cL  is such, so 

that  

dttytLtytLdttytL cccccc ∫∫ −= )()()()()()( &&  

and the filter can be implemented without differentiation since cL&  can be evaluated in 

advance.  
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2.3.3 LQG control problem 
 
The optimal control problem to be considered in this section refers to the system (2.3.1)-
(2.3.6) and the performance index  












+

−
= ∫ dttutRtutxtQtx

tt
EJ

ft

tf

))()()(')()()('(
1

00

         (2.3.34) 

where, as in the LQ context, 0)(')( ≥= tQtQ  and ttRtR ∀>= ,0)(')( , are matrices of 
continuously differentiable functions and 0)( ≠⋅Q  to avoid triviality. In the performance 

index (2.3.34) a term, which is a quadratic nonnegative function of )( ftx  could also be added. 

Its presence, however, does not after the essence of the problem but rather makes the 
discussion a little more involved. For the sake of simplicity here and likewise the intensity W 
of the noise w is assumed to be positive definite.  
The Linear Quadratic Gaussian (LQG) optimal control problem under consideration is defined 
in the following way  

Theorem 2.3.2 (LQG problem) Consider the system (2.3.1)—(2.3.6): Find the control, which 
minimizes the performance index (2.3.34). 

In problem 2.3.2, the control interval is given and may or may not be finite. In the first case, it 
is obvious that the multiplicative factor in front of the integral is not important, while in the 
second case it is essential as far as the boundedness of the performance index is concerned.  
 
 
2.3.3.1 Finite control horizon 
 
The solution of problem 2.3.2 is very simple and some how obvious. In fact, according to it, 
the actual value of the control variable is made to depend on the optimal estimate of the state 
of the system (t.e. the state of the Kalman filter) through a gain matrix resulting from the 
minimization of the deterministic version of the performance index (2.3.34) in an LQ context, 
namely  

dttutRtutxtQtxJ
ft

t

d ))()()(')()()('(
0

+= ∫  

The precise statement of the relevant result is given in the following theorem  

Theorem 2.3.7 Let 0=Z , 0t  and ft  be given such that ∞<<<∞− ftt0 . Then the solution 

of Problem 2.3.2 is  

xtKtxu o
c ˆ)(),ˆ( =             (2.3.35) 

where x̂  is the state of Kalman filter  

)()()),(ˆ()()(ˆ)]()()([)(ˆ tytLttxutBtxtCtLtAtx o
c −++=&        (2.3.36) 

with 00)(ˆ xtx = . In equations (2.3.35), (2.3.36), )()(')()( 1 tPtBtRtK −−=  and 
1)(')()( −Π−= WtCttL , where P and Π  are the solutions (unique, symmetric and positive 

semidefinite) of the differential Riccati equations  
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)()()(')()()()()(')()()( 1 tQtPtBtRtBtPtPtAtAtPtP −+−−= −& , 

VttCWtCtttAtAtt +ΠΠ−Π+Π=Π − )()()(')()()()(')()( 1&  

satisfying the boundary conditions 0)( =ftP , 00)( Π=Π t , respectively.  

Remark 2.3.8 (Optimal value of the performance index) 
The value of J resulting from the implementation of the control low given in Theorem 2.3.7 
can easily be evaluated by computing the quantity rJ  which is defined in the proof  of the 
quoted theorem . By taking into account equation (2.3.35) it follows that  












++












Π= ∫∫

ff t

t

t

t

r dttxtKtRtKtQtxEdtttQtrJ
00

)(ˆ)]()()(')()[('ˆ)()(  

In view of Remark 2.2.9 the second term is given by  












+∫

ft

t

KK dttPtWLtLxxtPtr
0

)()(')(')( 000  

where KP  is the solution of the equation  

)'()'()( RKKQPBKABKAPP KKK +−+−+−=&  

with the boundary condition 0)( =fK tP . In writing down these relations the equation for x̂ , 

the relevant boundary condition and the circumstance that the noise intensity is W have been 
taken into consideration. It is straightforward to check that the DRE for P (in the statement of 
the quoted theorem) reduces to the differential equation given above, provided that the terms 

PBK± , PBK ''±  are added to the DRE itself and the expression of K is taken into account. 
Therefore it follows that  












+Π+= ∫ dttPtWLtLttQtrxtPxJ

ft

t

r )]()(')()()([)('
0

000 . 

 
 
2.3.3.2 Infinite control horizon 
 
Unbounded control intervals can be dealt with also in a stochastic context and a partially nice 
solution found when the problem at hand is stationary, thus paralleling the results of the LQ 
and filtering framework. Consistent with eq.(2.3.34), the performance index to be minimized 
is  














+

−
= ∫

∞→
−∞→

dttutRtutxtQtx
tt

EJ
f

f

t

tft
t

))()()(')()()('(
1

lim
0

0 0

        (2.3.37) 

where the matrices Q and R satisfy the usual continuity and sign definitions assumptions. 
Moreover, the system (2.3.1)-(2.3.6) is controllable and reconstructable for all t, the initial 
state is zero, 0=Z  and 0>W . If these assumptions are satisfied the solutions of the two 
DRE relevant to Problem 2.3.2 can indefinitely extended and the following theorem holds 
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Theorem 2.3.8 Assume that the above assumptions hold. Then the solution of Problem 2.3.2 
when the control interval is unbounded that is when the performance index is given by 
equation (2.3.37) , is constituted by the control low  

xtKtxu o
c ˆ)(),ˆ( =  

where x̂  is the state of the Kalman filter  

)()()),(ˆ()()(ˆ)]()()([)(ˆ tytLttxutBtxtCtLtAtx o
c −++=&  

with )()(')()( 1 tPtBtRtK −−=  and 1)(')()( −Π−= WtCttL . The matrices P  and Π  are given 
by  

),(lim)( f
t

ttPtP
f ∞→

= , 

),(lim)( 0
0

ttt
t

Π=Π
−∞→

, 

where ),( fttP  and ),( 0ttΠ  are the solutions of the differential Riccati equations specified in 

Theorem 2.3.7 with the boundary conditions 0),( =ff ttP  and 0),( 00 =Π tt .  

Remark 2.3.9 (Optimal value of the performance index) 
If the LQG problem over an infinite interval admits a solution, the optimal value of the 
performance index can easily be evaluated by referring to Remark 2.3.8. Thus 












+Π

−
= ∫

∞→
−∞→

dttPtLWtLttQtr
tt

J
f

f

t

tft
t

o )]()(')()()([
1

lim
0

0 0

. 

The case when all the problem data are constant deserves particular attention: the most 
significant features are the constancy of matrices P  and Π  (and hence of matrices K  and 
L , too) and the fact that they satisfy the ARE resulting from setting to zero the derivatives in 
the DRE of the statement of Theorem 2.3.8. The importance of this particular framework 
justifies the formal presentation of the relevant result in the forthcoming theorem where 
(unnecessarily) restrictive assumptions are made in order to simplify its statement and some 
results concerning Riccati equations are exploited. 

Theorem 2.3.9 Let the matrices A, B, C, ∗∗= QQQ ': , R be constant, ,0=Z  ': ∗∗= VVV , 

0>W . Moreover let the couples ),( BA  and ),( ∗VA  be reachable and the couples ),( CA  and 

),( ∗QA  observable. Then the solution of Problem 2.3.2 when the control interval is not 
bounded, i.e. when the performance index is given by eq. (2.3.37), is specified by the control 
low  

xKxu o
c ˆ)ˆ( =  

where x̂  is the state of the Kalman filter  

)())(ˆ()(ˆ)()(ˆ tyLtxButxCLAtx o
c −++=&  

with PBRK '1−−=  and 1' −Π−= WCL . The matrices P  and Π  are the unique, positive 
definite solutions of the algebraic Riccati equations  

QRBPBRPAPA +−+= − ''0 1 , 
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VCWCAA +ΠΠ−Π+Π= −1''0 . 

Remark 2.3.10 (Optimal value of the performance index in the time-invariant case) 
In view of Remark 2.3.9 , the optimal value of the performance index when the LQG problem 
is time-invariant and the control interval is unbounded is given simply by  

]'[ LWLPQtrJ o +Π=  

This expression implies that ][ Π≥ QtrJ o  since the second term is nonnegative. (The 
eigenvalues of the product of the two symmetric positive semidefinite matrices are 
nonnegative). This inequality holds independently of the actual matrix R. Therefore, even the 
control cost becomes negligible (i.e. when 0→R ), the value of the performance index cannot 
be less than ][ ΠQtr  which, in a sense, might be seen as the price to be paid because of the 
imprecise knowledge of the system state. Since it can also be proved that  

]'[ KRKVPtrJ o Π+= , 

the conclusion can be drown that ][ VPtrJ o ≥  and again, even when the output measurement 
becomes arbitrary accurate )0( →W , the optimal value of the performance index cannot be 

less than ][ VPtr  which, in a sense, might be seen as the price to be paid because of the 
presence of the input noise.  

Remark 2.3.11 (Stability of the LQG solution) 
When the assumptions of Theorem 2.3.10 hold, the resulting control system is asymptotically 
stable. Indeed, since the Kalman filter, which is the core of the controller, has the structure of 
a state observer. It follows that the eigenvalues of the control system are those of matrices 

KBA +  and CLA + . All these eigenvalues have negative real parts because the solutions of 
the ARE (from which the matrices K  and L  originate) are stabilizing (recall the assumptions 
of Theorem 2.3.10).  
The solution of the optimal regulator problem has been proved robust in terms of phase and 
gain margins (see Subsection 2.2.4.2 of Section 2.2.4 in Chapter 2.2.1) The same conclusions 
hold in the filtering context because of the duality between the two problems. Thus one might 
conclude that the controller defined in Theorem 2.3.9 implies that the resulting control system 
is endowed with analogous robustness properties with regard to the presence of phase and 
gain uncertainties on the control side and/or the output side. This actually feels to be true.  
The unpleasant output is caused by the following fact. The transfer function  

)())((:)( 1 sGLCLKBAsIKsTu
−++−−=  

does not coincide with the transfer function BAsIKsTc
1)(:)( −−=  which is expedient in 

proving the robustness of the solution of the LQ problem. A similar discussion applies to the 
other side of )(sG , with reference to the transfer function  

LCLKBAsIKsGsTy
1))(()(:)( −++−−=  

and to the transfer function LAsICsT f
1)(:)( −−=  which , in the Kalman filter framework, 

plays the same role, from the robusthess point of view, as cT  does in the optimal regulator 

setting. It is steel easy to check that fT  is the transfer function which results from cutting the 

above quoted scheme at the point fP . Therefore, if the four matrices Q, R, V, W, are given 



 64

data of the problem and the available knowledge on the controlled process is not accurate, no 
robustness properties can a priori be guaranteed to the control system either on the actuator or 
on sensor sides. On the other hand, if, as often is the case, the four matrices above are to be 
meant as free parameters to be selected while carrying over a sequence of trials suggested by 
a synthetic procedure which exploits the LQG results, then a wise choice of them may again 
ensure specific robustness properties. In fact, by resorting to reasoning similar to which led to 
Theorem 2.2.12 of Subsection 2.2.4.3, the following results can be proved. They are started 
under the assumptions that the number of control variables u equals the number of output 
variables y and the matrices B C are full rank.  

Theorem 2.3.11 Let the triple ),,( CBA  be minimal and 'vBBV = . Then, if no transmission 

zeros of the triple ),,( CBA  has positive real part, the function yT  approaches the function fT  

as ∞→q .  

Remark 2.3.12 (Alternative statement of Theorem 2.3.10 and 2.3.11) 
By recalling the role plaid by the matrices Q and R in specifying the meaning of the 
performance index and by matrices V and W in defining the noises characteristics, it should be 
fairly obvious that instead letting matrices Q and V go to infinity, we could let matrices R and 
W go to zero.  
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Chapter 3 
 
Robust optimal control 
 
 
3.1 ∞Η  Optimal Control: Riccati-Approach 
 
 
3.1.1 Introduction 
 
In the last chapter, we considered the problem with respect to the 

2
H  norm. The performance 

specifications were given in the time domain. For single input single output (SISO) problems, 
for specifications in frequency domain the ∞H  norm is an adequate tool. In this way we are 
naturally lead to the question of how controllers can be characterized in a way which 
minimizes the closed loop transfer function zwF  with respect to the ∞H  norm. There are two 

important methods for solving this problem. One is based on two Riccati equations similar to 
those used in the 

2
H  problem. It will be analyzed in this chapter, whereas the other method 

uses linear matrix inequalities. 
We are lead to the characterization of suboptimal controllers instead of optimal controllers. 
The basic idea for solving the characterization problem is, as for the 

2
H  problem a change of 

variables of the kind Fxuv −= , with a matrix F with is related to a Riccati equation. The 
resulting problem is again an output estimation problem, which can be reduced in several 
steps to a full information problem. The technical details are much more complicated as for 
the 

2
H  problem. Thereby the basic structure of the plant is similar to that in 

2
H  control. In 

particular, the assumption 011 =D  is made again. This assumption is natural for 
2

H  problems 

but restrictive for ∞H  problems, since the introduction of weights in order to get a certain 

closed loop frequency response normally leads to generalized plants with 011 ≠D . It is 

possible to reduce problems with 011 ≠D  to ones with 011 =D  by a procedure called loop 
shifting. The introduction of frequency dependent weights leads in many situations to a so-
called mixed sensitivity problem. We discuss it together with problems based on other 
weighting schemes  and finally present a result on pole-zero cancellations. 
 
 
3.1.2 Formulation of the general H∞ problem 
 
We start with a general plant of the form 

uDwDxCy

uDwDxCz

uBwBAxx

22212

12111

21

,

,

++=
++=

++=&
 

i.e. 

















=

22212

12111

21

)(

DDC

DDC

BBA

sP . 
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A controller )(sK  is denoted as admissible, if it is proper and if it stabilizes internally the 

system )(sFzw . We now formulate the following problem. 

Problem 3.1.1 (Optimal ∞H  problem) Find all admissible controllers )(sK  which minimize 

the ∞H  norm of the feedback system. i.e. all admissible controllers that minimize 
∞zwF . 

For the minimization of the ∞H  norm it is more natural to ask for all suboptimal controllers. 
Finding an optimal controller is more difficult and, besides this, optimal controllers for the 

∞H  problem are not unique. They can be viewed as the limit case for suboptimal controllers 
and are not explicitly constructed. Therefore we are led to the following problem. 

Problem 3.1.2 (Suboptimal ∞H  problem) For a given 0>γ , find  all admissible controllers 

)(sK  with γ<
∞zwF . Such a controller is denoted as suboptimal. 

We define  

})(inf{ leisadmissabsKFzwopt ∞
=γ . 

Note that for optγγ = , there are no suboptimal controllers. For numbers γ , which are greater 

than the optimal value optγ , there are always admissible controllers with γ<
∞zwF . It is 

possible to characterize the suboptimal controllers belonging to optγγ >  completely. 

 
 
3.1.3 Characterization of ∞H suboptimal controllers by  

 means of Riccati equations 
 
 
3.1.3.1 Characterization theorem for output feedback 
 
In this section, we describe suboptimal ∞H  controllers for problems with a special structure. 
The following assumptions are made. 

(a1) ),( 1BA  is stabilizable and ),( 1 AC  is detectable. 

(a2) ),( 2BA  is stabilizable and ),( 2 AC  is detectable. 

(a3) 0' 112 =CD  and IDD =1212' . 

(a4) 011 =D  and 022 =D . 

These assumptions are too restrictive. Later it will be shown how they can be relaxed. 
Our first question is under which conditions internal stability is equivalent to  

∞ℜ∈ HFzw . 

Corollary 3.1.3.1 The assumptions (a1),(a3),(a4) imply that the feedback loop is internally 
stable if and only if ∞ℜ∈ HFzw . 

For the next theorem, the following Hamiltonian matrices are used: 
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−−
−

=
−

∞
''

''

11

2211
2

ACC

BBBBA
H

γ
 










−−
−

=
−

∞
ABB

CCCCA
J

'

'''

11

2211
2γ

. 

Theorem 3.1.3.1 Suppose the assumptions (a1)-(a5) hold. Then there exists an admissible 
controller with γ<

∞zwF  is and only if the following conditions are fulfilled: 

(i) )(RicdomH ∈∞  and 0)( ≥= ∞∞ HRicX ; 

(ii) )(RicdomJ ∈∞  and 0)( ≥= ∞∞ JRicY ; 

(iii) 2)( γρ <∞∞YX . 

If these conditions hold, such a controller is 








 −=
∞

∞∞∞

0

ˆ
)(

F

LZA
sK sub  

with 

211
2 'ˆ CLZXBBAA ∞∞∞

−
∞ ++ γ  

∞∞ −= XBF '2 ,  '2CYL ∞∞ −= ,  12 )( −
∞∞∞ −= XYIZ γ  

It is possible to describe this controller with an observer. The controller can equivalently be 
written in the form 

)~(~~~
221 yxCLZuBwBxAx worst −+++= ∞∞

&  

xFu ~
∞= , xXBwworst

~'~
1

2
∞

−= γ . 

The first equation defines an observer. The term xXBwworst
~'~

1
2

∞
−= γ  can be understood as an 

estimate of the disturbance xXBwworst ∞
−= '1
2γ . In this way, one gets a controller-observer 

structure similar to that for the 2H  problem. In contrast to this problem, the vector 1B  enters 

in the ∞H  observer. 

The ∞H  suboptimal controller has also the representation 

∞
−

∞∞∞ −−== FAsILZsK sub
1)ˆ()( . 

It has as many states as the generalized plant )(sP  and is strictly proper. The Riccati 

equations for ∞X  and ∞Y  are  

0')''(' 1111
2

22 =+−−+ ∞
−

∞∞∞ CCXBBBBXXAAX γ           (3.1.1) 

0')''(' 1111
2

22 =+−−+ ∞
−

∞∞∞ BBYCCCCYAYAY γ           (3.1.2) 
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3.1.3.2 Outline of the proof 
 
It is seen that the inequality γ<

∞zwF  can equivalently be written as  

   0
2

2

22

2
<− wz γ  for all  0),,0[2 ≠∞∈ wLw          (3.1.3) 

Here z is given by 

uDxCz

xuBwBAxx

121

11 0)0(,

+=
=++=&

, 

where u is the controller output. We assume that the Riccati equation (3.1.1) has a solution 

∞X . Using this equation and assumption (a3) and supposing that )(tx  tends to 0=∞x  as 
0→t  one obtains 

2

21
222

22

2

2

22

2
'' xXBwxXBuwz ∞

−
∞ −−+=− γγγ           (3.1.4) 

If all states are available, the choice 

xZBu ∞−= '2              (3.1.5) 

can be made. This leads to  

2

21
222

2

22

2
' xXBwwz ∞

−−−=− γγγ   for every ),0[2 ∞∈ Lw . 

The difference on the right-hand side vanishes only for 0=x  and 0=w . Hence, with the 
controller (3.1.5) inequality (3.1.3) holds and therefore we have γ<

∞zwF . 

We need the following matrices 

∞+=
∞

FBAAF 2 , ∞+=
∞

FDCC F 1211 . 

The next lemma is a first step in solving the full information (FI) problem for ∞H  optimal 
control. 

Lemma 3.1.3.1 Suppose )(RicdomH ∈∞  and 0)( ≥= ∞∞ HRicX . Then the inequality 

γ<
∞zwF  is fulfilled if the controller is given by the constant matrix 

∞−= XBsK ')( 2 . 

This lemma is also the key for the solution of the observable eigenvalue (OE) ∞H  problem.  
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